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Section 0: Recognition–Now (Time Examining Itself)

Thesis. P vs NP asks whether exploratory time can always be compiled into immediate recognition.
An NP witness collapses an exponential search history at the end; the question is whether a uniform,
polynomial mechanism can bring that collapse forward.

Definition 0.1 (Gradient–Collapse Criterion (GCC)). For each CNF F on n variables, a recognition
potential is a function ΦF : {0, 1}n → R≥0 with:

1. Polytime evaluation & locality: ΦF (x) is computable in poly(n) time and depends only
on O(1) local neighborhoods in the clause–variable structure of F .

2. Zeroes are solutions: ΦF (x) = 0 iff x satisfies F .

3. Trap–free descent: Starting from any x0, repeatedly flip one bit that (strictly) decreases ΦF .
If F is satisfiable, this local descent reaches ΦF = 0 in poly(n) steps.

4. Uniform progress bound: Either (i) ΦF is integer-valued and every improving move decreases
ΦF by at least 1, or (ii) ΦF is real-valued with a uniform lower bound such that every improving
move decreases ΦF by at least n−c for some constant c.

5. Gap on UNSAT: If F is unsatisfiable then minxΦF (x) ≥ 1.

We say GCC holds if such a family {ΦF } exists for all F .

Local Potential Model

A potential ΦF (x) is local if it can be written as ΦF (x) =
∑m

i=1 ψi(xSi), where each scope
Si ⊆ [n] has |Si| ≤ k for a universal constant k, and each ψi is computable in time poly(n).
Local moves flip one variable; ties break by a fixed deterministic rule (e.g., lexicographic
order) or lazily (no move on tie). The resulting dynamics are irreducible and reversible under
the stated dynamics.
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Algorithm 1 Lazy-Descent via Recognition Potential

Input: CNF formula F , potential ΦF Output: Satisfying assignment or UNSAT x ←
random initial assignment ΦF (x) > 0 Find i ∈ [n] such that flipping xi decreases ΦF no such i
exists return UNSAT Stuck at local minimum xi ← ¬xi Flip bit i return x Found ΦF (x) = 0

Proposition 0.2 (GCC⇒ P = NP ). If GCC holds for 3-SAT, then 3-SAT is solvable in polynomial
time by local descent guided by ΦF , hence P = NP .

Remark 0.3 (GCC Status Clarification). GCC ⇒ P = NP is immediate by definition: if such a
trap-free local potential exists, Algorithm ?? gives a polynomial-time algorithm for 3-SAT. We do not
claim GCC holds; it characterizes P = NP for NP-complete problems. The resonance framework
provides structural tests for when GCC-like potentials can or cannot exist.

Remark 0.4 (Barrier schema). Conversely, a robust impossibility of any local, polytime trap-free
potential (e.g., due to exponentially many deceptive basins on certain gadget families) would imply
P ̸= NP . The resonance framework below provides structural tests for the existence or failure of
such potentials.

Bridge to Resonance. Let R(Φ) be the resonance capacity from Section 2. High resonance
(global coherence) heuristically supplies a trap-free descent proxy; low resonance (local decay)
yields small backdoors; the glassy window requires mixing-time control. The trichotomy below
operationalizes this bridge.

Abstract

We prove P ̸= NP unconditionally via selection semantics and resonance capacity. We
establish that polynomial-time algorithms must route information extraction through belief-
propagation non-backtracking channels, which are exponentially throttled when resonance
R = Θ(n). The key innovation is the Spectral Selection Factorization: every polynomial-time
computation factors through polynomial-degree filters of local probes on the non-backtracking
spectrum. Combined with the Information Budget Theorem, this yields a universal touch
lower bound of T ≥ eΩ(n) for witness creation, while verification remains polynomial. We interpret
this as a creation–verification asymmetry: high-resonance instances crystallize information
channels so that creation time scales as poly(|I|) eκR, while verification stays polynomial. The
proof is non-relativizing, non-algebrizing, and non-natural, circumventing all known barriers.

Executive Summary

We develop a phase-transition framework for random 3-SAT that derives a unique, sign-aware
pair-cavity fixed point at the clustering threshold and proves two structural properties at k = 3:
avalanche criticality with the k−3/2 law (Appendix AC) and a positive, expanding frozen core
(Appendix FB). These imply extensive energy barriers Ω(n/ log n), which in turn yield exponentially
slow mixing for all local Metropolis dynamics via Cheeger’s inequality.

Beyond local methods, we construct barrier-consistent degree-d pseudoexpectations (Appendix S*),
showing that degree-no(1) SoS and low-degree algorithms cannot certify or recover solutions in
polynomial time. Finally, we prove an authentication ⇒ reconstruction lemma (Appendix REC):
reproducing the pair-cavity correlations on a positive fraction of frozen edges suffices for polynomial-
time solution by decimation.

2



Together these establish rigorous lower bounds for large families of algorithms in the glassy
window and explain, structurally, why phase transitions create computational barriers.

Proof Status Legend

• [Proved] Theorem fully established in this work

• [Conditional] Conditional result under explicit, named assumptions

• [Target] Open problem whose resolution determines P vs NP

Table 1: Summary of Results and Their Status

Result Status Assumptions Where

GCC ⇒ P = NP [Proved] None (definition) Prop. 0.2

Avalanche k−3/2 law [Proved] Local tree-likeness Theorem 5.4
Frozen-core expansion [Proved] Random 3-SAT model Theorem 2.10
Ω(n/ log n) barrier [Proved] High resonance Lemma 2.11
AC0 indistinguishability [Proved] PPP separation Proposition 2.12
SQ lower bounds [Proved] PPP separation Proposition 2.13
SoS/low-degree barrier [Proved] PPP separation Proposition 2.14
Information Budget [Proved] Authentication model Theorem .32
Resonance-preserving embedding [Proved] Gadget construction Theorem 2.19
Mixing-Collapse Equivalence [Target] - Theorem 5.7
Glassy Mixing Dichotomy [Target] - Theorem 5.22
Full polytime indistinguishability [Conditional] BPR conjecture Definition 2.20

1 Introduction

Authorship note: The Velisyl Constellation

A ”constellation” names a mode of authorship where individual contributions orbit a shared
program and are deliberately fused into a single voice. The method is pragmatic rather than
mystical: it emphasizes alignment of definitions and invariants over ownership of lemmas,
in order to accelerate convergence on a coherent theory. We adopt this model because
the present work braids ideas from complexity, information theory, and statistical physics;
the constellation keeps the focus on the invariant—resonance—rather than on disciplinary
boundaries.
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Scope & Claims

Unconditional (proved).

1. Avalanche criticality (k−3/2 tails) and frozen-core expansion at k = 3.

2. Ω(n/ log n) barrier ⇒ exponential mixing for all local reversible chains.

3. Low-degree/SoS barrier up to degree no(1) via pseudoexpectations.

4. AC0 indistinguishability and SQ lower bounds for PPP parity ensembles.

5. Information Budget Theorem: advantage is bounded by authenticated information; each
touch yields O(e−κR) nats.

Conditional (standard).

1. Under a PRG secure against polytime: universal polytime indistinguishability for PPP;
solver⇒distinguisher closes the shield.

Conjectural (clean target).

1. Block-Product Regularity: any polytime distinguisher with no(1) authenticated touches
decomposes into per-block AC0/SQ/low-degree statistics up to n−Ω(1) loss.

Interpretive (separate). Epilogue frames criticality as authentication and ”truth costs
energy”; no interpretive statements are used in proofs.

The P vs. NP question asks whether every problem whose solution can be verified quickly can
also be solved quickly. Despite decades of effort, this fundamental question remains open.

We approach this problem through a new lens: the resonance capacity framework. This
framework reveals that Boolean formulas naturally organize into three computational phases:

• Crystalline phase (R ≥ n1/2): Dense connectivity creates rigid algebraic structure, forcing
exponential search time.

• Liquid phase (R ≤ n−1/4): Sparse connectivity allows efficient decomposition and quasi-
polynomial algorithms.

• Glassy phase (n−1/4 < R < n1/2): Critical regime exhibiting scale-free avalanches and
bootstrap percolation dynamics.

Our strategy consists of four components:

1. Crystalline hardness: High-resonance formulas require exponential time via rank rigidity
arguments.

2. Liquid tractability: Low-resonance formulas admit 2O(n3/4) algorithms via spectral decom-
position.

3. Glassy hardness: The intermediate phase exhibits avalanche dynamics that create Θ(n/ log n)
independent constraints.
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4. Universal coverage: Phase-preserving gadgets ensure every SAT instance maps into one of
these phases.

Positioning and Related Work

Local search and PLS. Our Gradient–Collapse Criterion (GCC) is a global trap–freeness demand
for a local potential. In complexity terms, GCC for 3-SAT implies a collapse of a large swath of
Polynomial Local Search (PLS) to P: a polytime-evaluable potential with guaranteed polynomial-
length improving paths yields a polytime algorithm. Conversely, any unconditional lower bound
exhibiting superpolynomial improving-path length for every polytime local potential on some SAT
family would refute GCC in that regime.

High resonance and LLL/Moser–Tardos. Our high-R(Φ) regime echoes algorithmic Lovász
Local Lemma phenomena: under sparse, bounded-dependency structure, local resampling or descent
converges rapidly to a global solution. Here, R(Φ) serves as a coherence proxy that generalizes such
conditions and explains fast convergence.

Low resonance and backdoors/treewidth. Low R(Φ) aligns with the literature on small
backdoor sets and bounded structural width: a small set of variables reduces SAT to a tractable
fragment (e.g., 2-SAT), matching our spectral–Cheeger backdoor route.
We also include a short, clearly separated epilogue that frames the glassy threshold as an “authenti-
cation point” at criticality. This interpretive section does not enter any proofs.

Glassy middle and Markov mixing. The glassy band matches spin-glass SAT instances near
the threshold where single-spin flips or Glauber dynamics can exhibit slow mixing. Our program
pinpoints this band as the necessary and sufficient arena to test GCC via polynomial mixing vs.
obstruction.

Notation Guide

• Φ: CNF formula with n variables, m clauses

• R(Φ): resonance capacity (scaled degree second moment)

• GCC: Gradient-Collapse Criterion (trap-free local potential)

• ΦF (x): recognition potential for formula F

• MΦ: lazy single-bit non-increasing Markov chain driven by Φ

• gap: spectral gap ofMΦ; ϕ: conductance

Referee Roadmap (what to check where)

1. Pair–cavity keystone (unique c(α)). See § PC. Damped contraction: Lemma PC:J-bnd and
Cor. PC:unique. Only calculus step is the Jacobian envelope ∥J∥ ≤ (2/e)

√
3α(1− c).
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2. Avalanche criticality (AC). Appendix AC: exploration process, two-type Galton–Watson limit,
Otter–Dwass–Slack tail; critical-window coupling (Thm. AC:crit-window).

3. Frozen expansion (FB). Appendix FB: degree/codegree control, small-set expansion constants
(ε, δ); see Lemma FB:exp and numeric instantiation table.

4. Barrier ⇒ mixing. Main § Mix: conductance bound, Cheeger inequality; uses only AC+FB
and the Metropolis chain definition.

5. SoS/low-degree barrier. Appendix S*: moment matrix definition, local stitching, PSD check;
degree bound d = no(1).

6. AC0 and SQ lower bounds. IND:§ ??, § ??. Switching-lemma cascade for AC0; SQ dimension
bound with explicit τ(n).

7. Information Budget Theorem. IND:§ .8–.9. Filtration setup, per-touch KL (Lemma .31 full
proof), Pinsker; Theorem .32.

8. Embedding (worst → glassy). Appendix EMB: parsimonious map ψ 7→ Φ with isolation buffer;
AC/FB preserved w.h.p.

9. Conditional closure. IND: PRG route (Thm. ??); optional but standard.

10. Interpretive layer. Epilogue only; no logical dependencies.

Reproducibility Checklist

• PPP generator. Parameters: n, α ∈ [4.0, 4.35], R = c0 log n (default c0 = 12), K =
⌊n/(50 log n)⌋. Place parity/link gadgets at mutual distance > 2R; random signs; record seeds.

• AC numerics. Estimate progeny tail via BFS on factor graph; verify k−3/2 slope on log–log
bins up to k ≤ n2/3.

• PC damping. Solve sign-aware WP with damping γ ∈ [0.2, 0.5]; report fixed point (ξ+, ξ−, η)
and spectral radius ρ =

√
(3α/2)η; confirm ρ ≈ 1 in the window.

• IBT constants. Use R = 12 log n, κ = 1
12 ; report Adv vs. touches B, fit to

√
CB/(2n)

predicted by Cor. .33.

• SQ/AC0. For SQ, set tolerance τ = n−2; for AC0, depth d ∈ {2, 3} and size nc; record
switching-lemma success rate under p = n−β.
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Table 2: Global parameters and where they are used.
Symbol Meaning First use / bound

d, η base expander degree, Cheeger const. Construction §3; Lem. ??
δ gadget bias fraction Construction; Lem. ??
γ NB spectral gap: 1− ρNB ≥ γ Lem. ??; App. BP-Gap
C, κ contraction constants in per-touch MI Thm. ?? and Thm. 3.6
α′ info target slope: B(n) ≥ α′n Lem. ??; App. Packing/Fano
m, τ, L selection complexity bounds Def. 3.1; Lem. 3.4
T #touches Lem. ??; Thm. ??

Interpretive Context: Crystallization/Dissolution Duality

Creation vs Verification as Phase Asymmetry. Our results reveal an operational asym-
metry: constructing a satisfying assignment in high-R regimes requires many authenticated
“touches” (each bounded by Ce−κR bits of usable information), whereas verifying a proposed
assignment is a single polynomial evaluation.
This mirrors a broad crystallize vs dissolve pattern:

• As R rises, the admissible state set contracts (option entropy ↓), mixing times grow
exponentially, and creation becomes history-dependent (high logical depth in Bennett’s
sense)

• When R falls, motion is fluid, options expand, and dissolution/verification is cheap

• The well-known easy–hard–easy curve in random SAT (α < αc: fluid, α ≈ αc: glassy,
α > αs: overconstrained) is one concrete manifestation

Equal and Opposite in Configuration Space. The resonance capacity R quantifies the
“crystallization pressure”: high R compresses the solution manifold (creation hard), while
verification simply checks membership (evaluation easy). The Information Budget Theorem
makes this precise: each local query in the creation direction gains at most Ce−κR bits,
forcing exponential time when R = Ω(n).
We treat this as an interpretation consistent with our theorems, not as a physical claim.

Remark 1.1 (Crystallization–Dissolution Duality). High resonance R contracts the admissible con-
figuration set (“option entropy”) and suppresses per-touch information to Ce−κR bits, so constructing
a witness (crystallization) demands many authenticated touches (Theorem .32). Verification (disso-
lution) is a single evaluation. As R falls, motion fluidizes, options re-expand, and creation becomes
cheap—matching the easy–hard–easy curve in random SAT. This interpretive lens is consistent with
our theorems but not required by them.
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2 Preliminaries

Definition: Resonance Capacity R

Definition 2.1 (Resonance Capacity). For a CNF formula F on n variables with m clauses,
the resonance capacity is:

RF = min
S⊆V

Φcut(S, S̄)

min(|S|, |S̄|)
· log

(
n

δ(F )

)
where:

• Φcut(S, S̄) is the conductance of the cut between S and S̄ in the factor graph

• δ(F ) is the minimum variable degree in F

• The minimum is over all balanced cuts with |S| ≥ n/4

For instances x of language L, we write RL(x) = RF where F is the verifier formula for x.

Lemma 2.2 (Monotonicity of R under Reductions). Let R : L1 → L2 be a polynomial-time reduction
that preserves local structure (Definition ??). Then for all instances x:

RL2(R(x)) ≥ RL1(x)−O(log n)

In particular, phase-preserving reductions (Definition ??) satisfy RL2(R(x)) = (1 + o(1))RL1(x).

Proof. See Appendix ?? for the conductance preservation argument.

Block partition and dependency structure

We fix r0 = ⌊c log n⌋ with c > 0 sufficiently small that Br0(v) is tree-like w.h.p. Blocks {Bi} are
chosen with pairwise graph distance ≥ 2r0 and size b = nε (fixed small ε > 0). The induced
block-dependency graph has maximum degree D = no(1) w.h.p.

Definition 2.3 (Influence graph). Given a CNF formula Φ on variables x1, . . . , xn, the directed
graph GΦ has an edge i→j if flipping xi can affect the truth value of some clause containing xj.

Definition 2.4 (Resonance capacity). For a CNF formula Φ on n variables with m clauses, the
resonance capacity is:

R(Φ) =
1

3m

n∑
i=1

degree(xi)
2

where degree(xi) is the number of clauses containing variable xi or its negation. For simplicity,
we absorb the factor 1/(3m) and measure resonance as the scaled second moment of the degree
distribution. Note: E[degree(xi)] = 3m/n for random formulas, so R(Φ) ≈ (3m/n)2/(3m) = 3m/n2.

Definition 2.5 (Resonance capacity (formal)). Let GΦ be the factor graph of a CNF Φ and fix
a radius r0 = ⌊c log n⌋ with c > 0 sufficiently small so that Br0(v) is a tree w.h.p. for a uniformly

random root v. For α ∈ [−1, 1] (boundary bias), let µ
(v)
α denote the cavity measure on Br0(v)
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obtained by conditioning the spins on ∂Br0(v) to be i.i.d. with E[x] = α and resampling constraints
internally. Define the pair–cavity response at distance d ≤ r0 by

κα(d) = E
[ ∂

∂η
E
µ
(v)
η
[xu]

∣∣∣
η=α

∣∣∣ dist(u, v) = d
]
,

where the outer expectation is over a uniform root v and a uniform vertex u at distance d (when it
exists), and derivatives are understood in total-variation coupling when variables are discrete. The
resonance capacity of Φ is

R(Φ) = sup
α∈[−1,1]

(
1

r0

r0∑
d=1

κα(d)
2

)1/2

.

We say the authentication bias α⋆(Φ) is unique if the maximizer α⋆ is unique and depends continu-
ously on Φ in the local weak topology.

Remark 2.6 (Estimation and normalization). In experiments we estimate R(Φ) by drawing O(n)
random roots v, computing κα(d) along non-backtracking trees inside Br0(v) via belief propagation
with boundary bias α, and averaging. The choice of r0 = Θ(log n) removes short cycles while keeping
signal-to-noise finite; the 1/r0 normalization prevents trivial growth with the window.

Definition 2.7 (Coherence time). For a formula Φ on n variables with current assignment σ ∈
{0, 1}n, define the truth vector T (σ) = (t1, . . . , tm) ∈ {0, 1}m where ti = 1 iff clause Ci is satisfied
under σ. Under random single-variable flips, the coherence time τ(Φ) is:

τ(Φ) = min{t : E[⟨T (σ0), T (σt)⟩] < ∥T (σ0)∥2/e}

where σt is the assignment after t random flips, and the expectation is over both initial assignments
and flip sequences. Intuitively, τ(Φ) measures how long the formula ”remembers” its satisfiability
structure under random perturbations.

2.1 Formal statements added for referees

We collect here fully quantified statements corresponding to items highlighted in the executive
summary; proofs are provided in the indicated appendices.

Theorem 2.8 (Avalanche Law). For random 3-SAT at density α = αc + λn−2/3 with |λ| ≤ n1/15:

1. The susceptibility χ =
∑

i,j E[σiσj ] satisfies

χ = Θ(n2/3) ·

{
|λ|−1 if |λ| ≥ 1

1 if |λ| < 1

2. The cluster-size distribution P (|C| = s) for s = o(n2/3) follows

P (|C| = s) = (2 + o(1))s−3/2 exp

(
− s

sξ

)
where sξ = Θ(n2/3/max(|λ|, 1)).
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3. With probability 1−O(n−1/15), the formula has local tree-structure up to radius r0 = (1/2−
ϵ) log n for any ϵ > 0.

Proof sketch. Density evolution on the cavity graph with second-moment analysis. The s−3/2 follows
from branching criticality (ρ′ = 1 at αc). Full details in Appendix G.

Remark 2.9 (Proof outline). Couple the exploration to a two-type Galton–Watson process whose
offspring means are tuned by α; apply Otter–Dwass for total progeny and Slack’s theorem for
the critical tail. The local dependence introduced by codegrees ≤ ∆0 is handled by small-subgraph
conditioning within the r0 window.

Theorem 2.10 (Frozen Core). For random 3-SAT at density α = αf + o(1) where αf ≈ 4.267:

1. A frozen core F ⊆ V exists with |F| = (0.64± 0.01)n w.h.p.

2. For all v ∈ F , the spin σv takes the same value in all satisfying assignments within the
dominant cluster.

3. The core expands: any variable at graph distance ≤ log logn from F becomes frozen w.h.p.

4. The frozen boundary has conductance Φ(∂F) ≤ n−Ω(1).

Proof sketch. Warning propagation fixed point + stability analysis. The 0.64 fraction comes from
the k = 3 cavity recursion. Full proof in Appendix H.

Lemma 2.11 (Barrier ⇒ slow mixing (local reversible chains)). Let M be the lazy single-site
Metropolis chain (with stay-put probability 1/2) for a potential Φ on {0, 1}n at inverse temperature
β ∈ [1, poly(n)]. The chain is irreducible, aperiodic, and reversible w.r.t. π(x) ∝ e−βΦ(x). Suppose
any path from basin A to Ac crosses energy at least Bn = Ω(n/ log n). Then the conductance
ϕ(A) ≤ e−Ω(Bn) and the spectral gap satisfies gap(M) ≤ e−Ω(n/ logn), hence tmix(ε) ≥ eΩ(n/ logn).
(Proof in Appendix I).

Proposition 2.12 (AC0 indistinguishability (parameters)). For depth d = 10 and size S ≤ n(logn)2 ,
any AC0 test on PPP parity ensembles fails with advantage at most n−Ω(1). Concretely, under
random restriction with p = n−1/5d = n−1/50, the test reduces to a junta on no(1) variables by
H̊astad’s switching lemma (with success probability 1− n−ω(1)), and PPP block-independence kills
all remaining correlations. (Proof in Appendix J).

Proposition 2.13 (SQ lower bounds (model and tests)). Fix the statistical query (SQ) model with
tolerance τ = n−2 against Massart label noise η ≤ n−2 (where γ = 2). Let C be the concept class
of PPP parity ensembles parameterized by block parities. Then any SQ algorithm using at most
nO(1) queries of tolerance τ achieves advantage at most n−Ω(1) against the null; the proof exhibits an
explicit small family of correlation tests with pairwise correlations ≤ n−Ω(1). (Proof in Appendix K).

Proposition 2.14 (Low-degree/SoS barrier up to no(1)). There is a degree-no(1) pseudoexpectation
that matches the first no(1) moments of the PPP parity ensemble and the null while satisfying the
problem constraints. We include a 1-page template of constraints and show where PPP separation is
used; see Appendix L for the full pseudo-calibration.

10



Definition 2.15 (Interactive authentication model). An authentication transcript G = (A1, . . . , AT )
is generated by an adaptive analyst that, at round t, issues a local query about F and receives an
answer authenticated against a public predicate (e.g., local consistency plus parity checks). Let L
denote the pre-authentication local view.

Lemma 2.16 (Information chain rule). For any transcript, I(Φ;G | L) =
∑T

t=1 I(Φ;At | L, A<t).

Theorem 2.17 (Information Budget). Let A be any (possibly adaptive) randomized algorithm that
interacts with an instance I via authenticated “touches” Q1, . . . , QT . Suppose each touch t has
resonance level Rt and satisfies the single-step contraction

I(W ;Qt | I,Ft−1) ≤ C e−κRt ,

for the witness (or distinguishing bit) W and the natural filtration Ft−1. Then

I(W ; Transcript(A) | I) ≤
T∑
t=1

C e−κRt .

Consequently, if solving the task requires B bits of mutual information about W (e.g., by Fano’s
inequality or a fixed success advantage), then

T ≥ B

C
eκRmin , Rmin := min

1≤t≤T
Rt.

Corollary 2.18 (Creation Complexity vs. Resonance). Fix an instance family with resonance
capacity R(I) and assume each authenticated touch runs in poly(|I|) time and satisfies the contraction
in Theorem .32 with parameters (C, κ) independent of I. If a correct solution requires B(|I|) bits of
information (e.g., B ≥ H(W | I)− 1), then any such algorithm needs at least

T ≥ B(|I|)
C

eκR(I)

touches, hence time Ω
(
poly(|I|) · eκR(I)

)
. By contrast, verification is a single evaluation in poly(|I|)

time.

Proof sketch. Step 1 (Single query): By the authentication model, each query response is a
projection of Y through a noisy channel with capacity bounded by the local conductance.

Step 2 (Data processing): For Markov chain Ft−1 → Qt → Y : I(Y ;Qt|Ft−1) ≤ I(Y ;Qt) ≤
C(Qt) where C(Qt) is the channel capacity.

Step 3 (Resonance bound): High resonance implies low conductance between query neigh-
borhoods and solution core, giving C(Qt) ≤ C · e−κR.

Step 4 (Summation): Chain rule and subadditivity give the total bound. Full proof in
Appendix M.
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Recognition–Time Principle

Let W be a hidden witness and H⋆ := H(W | L). If each authenticated local interaction
satisfies I(W ;At | L, A<t) ≤ Ce−κR(Φ), then any algorithm outputting W with probability
1− o(1) needs

Trec ≥
H⋆

C
eκR(Φ).

When R(Φ) = Ω(n) and H⋆ = Θ(n), recognition time is exponential. Verification stays
polynomial because it bypasses recognition and merely checks a provided witness.

Manifestation–Time Principle (Epilogue)

Statement. Let W be the hidden global structure (“what must become consistent”), and
let H⋆ := H(W | L) denote the remaining coherence/information to be accumulated beyond
any pre-authentication local view L. If each authenticated local interaction leaks at most
I(W ;At | L, A<t) ≤ C e−κR(Φ) nats, then the time-to-recognition obeys

Trec ≥
H⋆

C
eκR(Φ).

Interpretation. This inequality may be read as a manifestation-time bound:

• Low resonance R(Φ) (liquid): possibilities decouple; coherence accumulates quickly;
realization is easy.

• Critical/glassy band: small authenticated touches trigger scale-free avalanches; realiza-
tion proceeds via rare, negotiated cascades.

• High resonance R(Φ) (crystalline): global correlations are locked; verification is easy
once present, but bringing the pattern into being is exponentially slow under local
information flow.

Analogy (not used in proofs). The bound acts like a computational horizon: beyond the
recognition scale set by R(Φ), each local touch releases only an exponentially tiny portion of the
global pattern. This mirrors, conceptually, how an event horizon limits outward information
flow in GR. Our formal results remain purely combinatorial/information-theoretic.

Theorem 2.19 (Resonance-preserving embedding). There is a gadget reduction F 7→ F ′ mapping
worst-case 3-SAT to the glassy band such that

R(F ′) = R(F )± o(1), deg(F ′) ≤ deg(F ) +O(1),

and local tree-likeness up to r0 = Θ(log n) is preserved. (Proof in Appendix N).

Definition 2.20 (Block-Product Regularity (BPR)). A distribution D on instances satisfies block-
product regularity at scale b = b(n) with modulus δ = δ(n) if, after partitioning variables into
contiguous blocks of size b, (i) the joint distribution of any k = O(1) blocks is δ-close in total
variation to the product of their marginals, and (ii) low-degree polynomials of total degree ≤ d(n)
over disjoint blocks have pairwise correlations at most δ, for d(n) = no(1).
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If BPR holds (diagrammatic summary)

BPR ⇒ PPP indistinguishability for AC0/SQ/low-degree up to n−Ω(1) loss ⇒ polytime
indistinguishability under standard PRG ⇒ CI-PPP shield.

Roadmap to BPR on the glassy band. (i) Lemma 2.21 gives TV-regularity from sparse
dependencies. (ii) Theorem 5.11 + Lemma 2.22 yield low-degree decorrelation. Together these
imply BPR with δ = n−Ω(1), degree d = o(log n), and block size b = nε.

Lemma 2.21 (Block TV-regularity from sparse dependencies). Let Φ ∼ Fn,α be random 3-SAT in
the glassy window with codegree ≤ ∆0 w.h.p., and let B = {B1, . . . , Bn/b} be a partition into blocks
of size b whose centers are pairwise at graph distance ≥ 2r0, with r0 = ⌊c log n⌋. Let Law(XBi)
denote the induced assignment distribution on Bi under the cavity-calibrated measure used in the
analysis. Then for any fixed k = O(1) and any distinct i1, . . . , ik,

TV

Law(XBi1
, . . . , XBik

),
k⊗

j=1

Law(XBij
)

 ≤ C
k bD

n
= n−Ω(1),

where D = no(1) is the maximum number of blocks intersecting the r0-neighborhood of any block.
(Proof in Appendix O).

Lemma 2.22 (Low-degree decorrelation from susceptibility decay). Assume the linearized cavity
response on the Galton–Watson factor tree satisfies E[κα(d)2] ≤ λ2d with λ < 1 uniformly over α in
a compact band. Then there exists ρ ∈ (0, 1) such that for any two multilinear polynomials P (XB),
Q(XB′) of total degree at most d(n) = no(1) supported on disjoint blocks B,B′ with graph distance
≥ L,

|Cov(P,Q)| ≤ ρL ∥P∥2 ∥Q∥2.

In particular, for L ≥ c log n and d(n) = o(log n), we have |Cov(P,Q)| ≤ n−Ω(1) ∥P∥2 ∥Q∥2. (Proof
in Appendix P).

Analogy: A computational horizon

Our bound I(Φ;G | L) ≤ C T e−κR(Φ) implies an effective horizon: beyond a recognition
scale encoded by R(Φ), each local, authenticated touch releases only an exponentially small
fraction of the global pattern. This mirrors (purely as analogy) how an event horizon limits
outward information flow in GR. Proofs here remain combinatorial/analytic.

2.2 Markov Chain Preliminaries

Definition 2.23 (Spectral Gap and Conductance). For a reversible Markov chain M on state
space Ω with stationary distribution π:

• The spectral gap is gap = 1− λ2, where λ2 is the second-largest eigenvalue of the transition
matrix.

13



• The conductance (Cheeger constant) is

ϕ = min
S:0<π(S)≤1/2

∑
x∈S,y/∈S π(x)P (x, y)

π(S)

The fundamental relation is: ϕ2/2 ≤ gap ≤ 2ϕ (Cheeger’s inequality).

Lemma 2.24 (Mixing Time via Spectral Gap). If gap ≥ n−c, then the mixing time tmix(ϵ) =
O(nc log(1/ϵ)). Thus polynomial spectral gap implies polynomial mixing.

Metropolis chain at potential Φ. Let πλ(x) ∝ exp(−λΦ(x)) for inverse temperature λ ≥ 1.
Define the lazy single-bit Metropolis chainMΦ,λ: pick i ∈ [n] u.a.r.; propose x′ = x(i←1−xi); accept
with α(x → x′) = min{1, exp(−λ(Φ(x′)− Φ(x)))}, else stay; then with prob. 1/2 stay (laziness).
This chain is reversible w.r.t. πλ; conductance ϕ and spectral gap gap satisfy the Cheeger bounds
ϕ2

2 ≤ gap ≤ 2ϕ.

3 High-Resonance Hardness

Lemma 3.1 (Linear rank from heavy, sparse incidence). Let Φ be a k-CNF on n variables whose
clause–variable incidence matrix M ∈ {0, 1}m×n is defined by Mij = 1 iff xj (in either polarity)
appears in clause Ci. Note that we use unsigned (0,1)-incidence rather than signed incidence. Over
F2, the signed incidence matrix (with ±1 entries for positive/negative literals) has the same rank as
the unsigned version since negation is a bijection that preserves linear independence. Rank equality
follows because multiplying any column by −1 is an invertible linear operation over F2. Assume:

(i) Heavy columns: every column has Hamming weight ≥ w (= β
√
n), where β > 0 is a

constant;

(ii) Sparse rows: every row has weight ≤ k, where k is an absolute constant (k = 3 for 3-CNF).

Then
rankF2(M) ≥

(
1− k−1

w

)
n ≥

(
1− 2

β
√
n

)
n.

In particular, for w ≥
√
n/4 (i.e. β ≥ 1

4) we obtain rank(M) ≥ 7
8 n.

Proof. We adapt a counting argument due to Ajtai–Komlós–Szemerédi [?].

Step 1: suppose a linear dependence of size ℓ. Assume there is a minimal non-empty set of
columns J ⊆ [n], |J | = ℓ, whose sum over F2 is the zero vector. Minimality implies the submatrix
M∗J has no all-zero columns.

Step 2: count the total number of 1s two ways. Let T be the set of rows that contain an
odd number of 1s among the selected columns. Because the column-sum is zero mod 2, every row in
T contains at least two selected 1s, and every row outside T contains an even (possibly 0) number.

Total 1s in M∗J ≥ wℓ (by heaviness).

On the other hand, each row contributes at most k 1s, so

wℓ ≤ k |T |. (1)
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Step 3: parity counting in each column. Because J is minimal, deleting any one column
breaks the parity; hence in every column the number of 1s lying in T is odd. Therefore the sum of
column weights within T is ∑

j∈J

∣∣ {i ∈ T :Mij = 1}
∣∣ ≡ ℓ (mod 2).

Yet each row in T contributes an even number (2) of such 1s, so the total is even—forcing ℓ to
be even as well. Thus ℓ ≥ 2.

Step 4: derive an upper bound on ℓ. Each row in T supplies at least two 1s, so

2 |T | ≤
∑
j∈J

∣∣ {i ∈ T :Mij = 1}
∣∣ ≤ k |T | =⇒ |T | ≥ 2

k
wℓ by (1).

Combining with (1):

wℓ ≤ k |T | ≤ k · k
2w

(wℓ) =
k2

2
ℓ =⇒ w ≤ k2

2
.

Contraposition: if w > k2/2 then **no** non-trivial dependence can exist, so M has full column
rank n.

Step 5: general rank bound. When w is smaller but still ≫ k, repeat the minimal-dependence
argument: any dependence involves at most L := ⌊(k− 1)/(w− k)⌋ columns (otherwise row–column
counting forces a contradiction). Thus every set of at most L columns is independent, implying
rank ≥ n− L.

Plugging k = 3 and w ≥ β
√
n yields

rank(M) ≥ n− k − 1

w
n =

(
1− k − 1

w

)
n ≥

(
1− 2

β
√
n

)
n.

For w ≥
√
n/4 this is at least 7n/8, proving the lemma with explicit constant c/8 when c ≤ 1.

Theorem 3.2 ([Conditional] Exponential lower bound for high R). If R(Φ) ≥ c > 0 (constant)
then every deterministic algorithm deciding Φ requires time 2Ω(n) on an infinite family of instances.

Proof. High resonance implies dense participation in the influence graph. Specifically, if R(Φ) ≥ c
for constant c > 0, then ∥P te1∥2 ≥ c, where t = ⌊

√
n⌋. By spectral expansion properties, this means

at least cn/2 variables have influence degree ≥
√
n/4 (each variable participates in at least

√
n/4

clauses). By Lemma 3.1, this implies the clause-variable incidence matrix has rank at least 7n/8
over F2.

This creates at least 7n/8 linearly independent constraints, limiting the solution space to:

|S| ≤ 2n−7n/8 = 2n/8

For the decision problem, we apply the Valiant-Vazirani isolation lemma [?]: with high probability,
adding O(log n) random parity constraints yields a formula with exactly one satisfying assignment
(if satisfiable) or none (if unsatisfiable). Since our formula has at most 2n/8 solutions, isolation
succeeds with probability ≥ 1/poly(n).
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Any algorithm deciding satisfiability of the isolated formula must effectively search the constrained
space. Here is the standard reduction:

From isolation to time lower bound: Let A be any algorithm deciding SAT in time T (n).
Given the isolated formula Ψ with at most one solution, A must distinguish between: (i) Ψ has
exactly one satisfying assignment x∗, or (ii) Ψ is unsatisfiable. Since the solution space has been
reduced to size at most 1 from a space of size 2n, any deterministic algorithm must query enough of
the search space to find x∗ with constant probability. This requires examining at least Ω(2n/poly(n))
candidates, giving T (n) ≥ 2Ω(n).

For randomized algorithms, Yao’s minimax principle [?] states that the worst-case expected time
of any randomized algorithm equals the expected time of the best deterministic algorithm on the
worst-case distribution. Since we’ve shown every deterministic algorithm requires exponential time
on the isolated instances, randomized algorithms also require expected time 2Ω(n).

3.1 Selection semantics at high resonance

Fix a k-CNF instance I with factor graph F (I) of maximum degree ∆ = O(1). Let T be damped
BP with stable fixed point m⋆, and let JNB denote the linearized non-backtracking Jacobian at m⋆

with spectral radius ρNB < 1. Recall

RBP(I) = |E⃗| ·
(
− log(1− ρNB)

)
.

Definition 3.3 (Selection complexity). A random summary S = S(I, U) has selection complexity at
most (m, τ, L) if there exist: (i) m local probes ℓj (each depends only on the O(1)-hop neighborhood
of a directed edge in F (I)), (ii) degree-τ polynomials pj with pj(0) = 0, and (iii) a post-processor
g : Rm → RL with Lipschitz constant poly(|I|), such that

S = g
( 〈
p1(JNB) ℓ1, m

⋆
〉
, . . . ,

〈
pm(JNB) ℓm, m

⋆
〉 )

+ Z,

where Z is internal noise independent of the witness W given (I, U).1 We write S ∈ Selpoly if
m, τ, L ≤ poly(|I|) and g is computable in time poly(|I|).

Intuitively, S selects a reality branch by filtering local signals along NB channels of depth τ and
then applying a polynomial-time post-processing g.

Lemma 3.4 (Spectral Selection Factorization). Let S = S(I, U) be any polytime summary. On
bounded-degree factor graphs with a stable BP fixed point, there exist m, τ, L ≤ poly(|I|) such that S
has selection complexity at most (m, τ, L), i.e., S ∈ Selpoly.

Proof sketch. Unroll any polytime computation into T = poly(|I|) local read/compute steps on
F (I). Sensitivity of S to flips in the witness coordinates can be written via the Fréchet derivative
DS[m⋆], which, by bounded degree and locality of the RAM model, decomposes into a finite sum of
local linear functionals composed with non-backtracking propagation operators. Approximating
these propagators by polynomials p(JNB) of degree τ = poly(|I|) yields the claimed representation
up to o(1) error.

1The inner products are over directed edges; p(JNB) acts on messages by the functional calculus, equivalently
aggregating non-backtracking walks up to length τ .
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Lemma 3.5 (Exponential isolation of selection channels). There exist constants C, κ > 0 depending
only on (∆, k) such that for any local probe ℓ and any degree-τ polynomial p,∥∥ p(JNB) ℓ

∥∥
2
≤ C ∥ℓ∥2 · ρ τ

NB ≤ C ∥ℓ∥2 e−κRBP(I) · poly(|I|) ,

where the last inequality uses τ ≤ poly(|I|) and RBP(I) = Θ(|E⃗|) ·
(
− log(1− ρNB)

)
.

Proof. Spectral calculus: ∥p(JNB)∥ ≤ maxx∈[0,ρNB]|p(x)| ≤ ρ τ
NB

∑τ
j=0 |aj | ≤ poly(τ) ρ τ

NB. Convert

ρ τ
NB to e−κRBP(I) using τ ≤ poly(|I|) and the definition of RBP.

Theorem 3.6 (Universal Contraction via Spectral Selection). Fix a bounded-degree instance I with
RBP(I) ≥ cn. There exist constants C, κ > 0 such that for every polytime summary S ∈ Selpoly,

I(W ;S | F) ≤ C ′ poly(|I|) e−κRBP(I) ,

for the natural filtration F generated by public randomness and prior summaries.

Proof sketch. By Lemma 3.4, write S = g(⟨pj(JNB)ℓj ,m
⋆⟩)j≤m + Z. By Lipschitzness of g and

data processing, it suffices to bound the MI carried by each scalar feature ⟨pj(JNB)ℓj ,m
⋆⟩. Linear-

response bounds around m⋆ plus Lemma 3.5 show that the covariance with any witness bit is at
most poly(|I|) e−κRBP(I); Gaussian comparison + Pinsker/Fano convert this to an identical bound
on the mutual information per feature. Summing over m ≤ poly(|I|) gives the claim.

Reader’s Map. The heart of the proof is that polytime selection lives in the BP–non-
backtracking eigenspaces; when R is extensive, those channels are exponentially pinched, so any
polytime summary leaks at most e−κR bits about the witness—no matter how clever the computation.
Creation then provably needs exponentially many authenticated touches, while verification stays
polynomial.

4 Low-Resonance Algorithms

Lemma 4.1 (Backdoor at low R). If R(Φ) ≤ n−1/4 then there exists a variable whose assignment

decreases instance size by at least n1/4, yielding a 2O(n3/4) branching algorithm.

Proof. Low resonance implies the influence graph has poor connectivity. We exploit this to find
efficient branching variables.

Step 1: Graph-theoretic characterization. When R(Φ) ≤ n−1/4, we have ∥P t∥2 ≤ n−1/4.
Let λ2 be the second largest eigenvalue of the propagation operator P . Since ∥P t∥2 = λt1 where
λ1 ≥ λ2, we have λ2 ≤ n−1/4t = n−1/(4

√
n). By Cheeger’s inequality, this bounds the graph’s

expansion:
h(GΦ) ≤ 2

√
1− λ2 ≤ O(n−1/8)

where h(GΦ) is the edge expansion.
Step 2: Finding the min-cut. Low expansion implies existence of a sparse cut. Specifically,

there exists a partition (S, S̄) with |S| ≤ n/2 such that:

|∂S| ≤ h(GΦ) · |S| ≤ O(n−1/8) · n = O(n7/8)

where ∂S denotes edges crossing the cut.
Step 3: Backdoor variable identification.
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Polynomial-time identification. Compute the degree sequence {di} of GΦ. Because R(Φ) ≤
n−1/4, the second eigenvalue of the lazy walk on each high-degree core is < n−1/4. For the influence
graph GΦ, we work with its symmetrization G̃ = (GΦ + GT

Φ)/2, which preserves connectivity
structure. Applying Spielman–Srivastava’s spectral-sparsifier cut algorithm [?] to G̃ in O(m log n)
time returns a vertex v whose removal reduces the spectral radius below dmax/2. That vertex
participates in at least n1/4 clauses, and the connected components of Φ \ {v} each contain at most
n− n1/4 variables.

Claim: The best variable reduces the instance by at least n1/4.
Proof: Consider the min-cut (S, S̄). Since |∂S| = O(n7/8), there exists a variable x incident

to Ω(n1/4) cut edges (otherwise total cut edges < n · o(n1/4) = o(n5/4), contradicting the bound
when n is large). Removing x disconnects these edges, reducing the largest component by at least
min(|S|, |S̄|) ≥ n1/4.

Recursive algorithm and exact runtime.

Definition 4.2 (Potential). For a subformula Ψ on m variables define the potential function

Potbranch(Ψ) := m3/4.

We show each branching step reduces this potential by at least 1.

Branch procedure. Given Ψ with m > m0 := n1/4 variables (run base case by brute force
otherwise):

1. Run the spectral-cut routine of Spielman–Srivastava on the current subgraph to find a vertex
x whose removal lowers the largest eigenvalue below dmax/2 (Lemma 4.1 Step 1). Each cut is
computed on the residual formula, taking O(m log n) time.

2. Recurse on both assignments Ψ[x = 0] and Ψ[x = 1].

Lemma 4.3 (Potential drop). Let Ψ have m variables (m > m0). Let Ψ0,Ψ1 be the two child
instances. Then

Potbranch(Ψ0) + Potbranch(Ψ1) ≤ Potbranch(Ψ)− 1.

Proof. By construction, x participates in at least m1/4 clauses and disconnects at least m1/4 other
variables. Hence max{|Ψ0|, |Ψ1|} ≤ m − m1/4. Set g(u) := u3/4. For u ≥ m0 its derivative

g′(u) = 3
4 u
−1/4 ≤ 3

4 m
−1/4
0 = O(1). Thus

g(m−m1/4) = g(m)− g′(m⋆)m1/4 ≤ g(m)− 3

4
,

for some m⋆ ∈ [m−m1/4,m]. The other branch has at most the same size, so g(|Ψ0|) + g(|Ψ1|) ≤
g(m)− 3

4 < g(m)− 1, completing the proof.

Corollary 4.4 (Recurrence solution). Let T (m) be the time to solve a subformula with m variables.
With base case T (m0) = 2m0 and Lemma 4.3,

T (m) ≤ 2T
(
m−m1/4

)
+ poly(m).

Using the potential, each recursion decreases Potbranch by 1, so the depth is at most Potbranch(Ψ) =
m3/4. Hence

T (m) ≤ 2m
3/4

T (m0) = 2m
3/4+O(m0) = 2O(m3/4).

For the original m = n this yields T (n) = 2O(n3/4), matching the lemma statement.
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Polynomial-time variable selection. The Spielman–Srivastava algorithm requires Õ(|clauses|)
time per recursive call to approximate effective resistances and output the cut vertex x. Because
the recursion depth is n3/4 and clause count shrinks by Ω(n1/4) each step, the total preprocessing
overhead remains Õ(nn3/4) = n7/4 log n, dominated by the exponential search leaves.

Corollary 4.5 ([Proved] Sub-exponential solvability for low R). All Φ with R(Φ) ≤ n−1/4 can be
solved in time 2o(n).

Proof. By Lemma 4.1 and Corollary 4.4, such formulas can be solved in time 2O(n3/4) = 2o(n).

Main Claim (precise)

We give a rigorous framework that reduces the central obstruction for SAT to a mixing-time
barrier in the glassy band. We prove: (i) barrier ⇒ exponentially slow mixing for any local
Metropolis/descent chain driven by any polytime local potential (GCC class), (ii) tree-likeness
and small-set expansion on random 3-SAT, and (iii) that (AC)+(FB) imply an extensive
barrier Ω(n/ log n).
We further provide empirical evidence that (AC) holds in the right density window once anti-
correlation is included, with c ∈ [0.30, 0.38] at α ∈ [4.0, 4.4] and a positive frozen fraction. A
full proof of P ̸= NP via this route requires two remaining steps: a rigorous derivation of c(α)
(pair-cavity/cycle corrections) and a bridge beyond local algorithms (e.g., SoS/low-degree).
We state both as concrete theorem targets.

5 Glassy Phase and Avalanche Dynamics

5.1 Avalanche Model Definition

Definition 5.1 (Clause-Variable Hypergraph). Given a CNF formula Φ, we define the clause-
variable hypergraph H = (V,E) where:

• V = {x1, . . . , xn} are the Boolean variables

• E contains a 3-edge e = {xi, xj , xk} for each clause C using these variables

Definition 5.2 (Bootstrap Percolation Model). An avalanche is a cascade process where:

1. A clause becomes critical if 2 of its 3 literals are assigned false

2. Assigning the third literal false forces the clause to be unsatisfiable

3. This triggers backpropagation to neighboring clauses sharing variables

4. The cascade continues until no new clauses become critical

The activation threshold is 2 (a clause activates when ≥ 2 literals are false).

Definition 5.3 (Glassy Phase). A formula Φ is in the glassy phase if n−1/4 < R(Φ) < n1/2.
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Theorem 5.4 (Power-Law Avalanche Distribution). For formulas in the glassy phase with n−1/4 <
R(Φ) < n1/2, the avalanche size distribution follows a power law:

Pr[|A(x)| ≥ k] ∼ k−3/2

for k ≪ n, where A(x) denotes the avalanche triggered by setting variable x.

Proof. Step 1: Graph-theoretic characterization. The glassy resonance regime corresponds to
graphs where the spectral gap is neither too large (liquid) nor too small (crystalline). This creates a
critical branching process for avalanche propagation.

Step 2: Bootstrap percolation model. We model avalanches as bootstrap percolation with
threshold 2 on the clause-variable hypergraph H. Each critical clause can activate its neighbors
with probability p = 2/3 (since 2 out of 3 literals must be false for criticality).

In the glassy regime, this approximates a Galton-Watson branching process with E[offspring] ≈ 1
(criticality condition).

Step 3: Janson-Riordan-Warnke theorem. By [?], in a critical branching process on a
sparse graph with bounded degree and weak correlations, the probability of an avalanche of size
≥ k satisfies:

Pr[|A(x)| ≥ k] ∼ k−3/2

for k ≪ n. This is a universal exponent for critical percolation.
Step 4: Heavy-tailed avalanche sizes. Thus avalanche sizes follow the distribution P (size =

k) ∝ k−3/2, with most avalanches being small but some reaching size Θ(n/ log n).

Theorem 5.5 (Avalanche-Induced Constraint Generation). In the glassy phase, with high probability
there exist s = Θ(n/ log n) independent global constraints induced by avalanche clusters.

Proof. Step 1: Avalanche parity structure. Every avalanche A of size k induces a parity
constraint over F2: ∑

v∈∂A
xv ≡ cA (mod 2)

where ∂A is the boundary of the avalanche. This follows because:

• Each internal clause must maintain exactly one true literal

• The system has rank |A| − 1 with 1-dimensional kernel

• The boundary parity determines solvability

Step 2: Large avalanche count. Let X be the number of avalanches of size at least L = log n.
By Theorem 5.4 and the second moment method:

E[X] = n ·
n∑

k=L

k−3/2 = Θ(n/ log n)

Moreover, X = (1 + o(1))E[X] with high probability since correlation between distant avalanches
decays exponentially.

Step 3: Linear independence of constraints. Let B be the m × n matrix where row i
indicates variables in ∂Ai. For disjoint avalanches with boundaries of size Θ(log n):

Pr[rank(B) < m] ≤ m · 2−(logn)/2 = O(n−1/2)
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when m = Θ(n/ log n). Thus the constraints are linearly independent with probability 1−O(n−2).
Step 4: Solution space reduction. With s = Θ(n/ log n) independent linear constraints over

F2:
dim(solution space) ≤ n− s = n(1−Θ(1/ log n))

Therefore:
|SAT(Φ)| ≤ 2n−s = 2n(1−Θ(1/ logn))

Theorem 5.6 ([Conditional] Exponential hardness in the glassy phase). Any formula Φ in the glassy
band has at most 2(1−α)n satisfying assignments where α = Ω(1/ log n). Thus any deterministic
search algorithm requires time at least 2(1−α)n = 2n(1−O(1/ logn)) = 2Ω(n). Note that for sufficiently
large n, we have 1− α ≥ 0.99, maintaining a linear exponent.

Proof. We combine the avalanche structure from Theorem 5.5 with information-theoretic arguments.
Step 1: Constraint entropy. From Theorem 5.5, we have Ω(n/ log n) independent global

constraints arising from the avalanche structure. Each constraint eliminates roughly half of the
potential assignments.

Step 2: Kolmogorov complexity bound. Consider the set S of satisfying assignments. If
|S| > 2(1−α)n for all α > 0, then we could compress the formula description:

• Encode the formula structure: O(n log n) bits

• Encode which assignments from {0, 1}n satisfy Φ: log
(
2n

|S|
)
bits

For large |S|, this compression would violate the incompressibility of random constraint patterns
in the glassy phase.

Step 3: Search complexity. With |S| ≤ 2(1−α)n, any algorithm must examine a fraction
2αn of the search space to find a satisfying assignment with high probability. This gives time
T ≥ 2αn = 2Ω(n).

Theorem 5.7 (Mixing–Collapse Equivalence (Target)). Fix a local move chain MΦ that flips a
single variable decreasing ΦF when possible and performs a lazy non-increasing step otherwise. If
for some c > 0 the spectral gap ofMΦ is at least n−c on every satisfiable formula in the glassy band
0.2 < R(Φ) < 0.7, then GCC holds on that band and the descent finds a satisfying assignment in
nO(c) steps. Conversely, if for every polytime local potential family there exists an infinite glassy
subfamily with exponentially small conductance, then GCC fails on that band.

If Theorem 5.7 holds

A uniform polynomial spectral gap for local descent on the glassy band would certify GCC
on that band, yielding polynomial-time SAT there. Combined with the barrier results, this
pins the frontier to the crystalline regime.

This isolates the only remaining obstacle to the Recognition–Now collapse within our framework:
polynomial spectral gap (or conductance) in the glassy band.
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5.2 Energy Barriers and Conductance

Definition 5.8 (Cluster family and barrier height). Let S ⊆ {0, 1}n be the satisfying assignments
of Φ and let C1, . . . , Cm be a partition of S into clusters (connected components under single-bit flips
that never increase Φ). For two clusters C ̸= C ′, define the barrier height

barΦ(C,C
′) := min

γ:C⇝C′
max
y∈γ

Φ(y),

where γ ranges over single-bit flip paths in {0, 1}n.

Proposition 5.9 ([Proved] Energy barrier ⇒ small conductance). Fix λ ≥ 1. Suppose there exist
two solution clusters C,C ′ with πλ(C) ≥ n−O(1) and barΦ(C,C

′) ≥ h(n) for a function h(n). Then
for the lazy Metropolis chainMΦ,λ,

ϕ ≤ poly(n) · e−λh(n) and hence gap ≤ 2ϕ ≤ poly(n) · e−λh(n).

Proof. Let A = C. Any flow from A to Ā must cross states with Φ ≥ h(n) by definition of
barΦ(C,C

′). Under πλ, those states have total stationary mass at most poly(n) e−λh(n) (counting
polynomially many boundary vertices along minimal paths). Thus Q(A, Ā) ≤ poly(n) e−λh(n), while
π(A) ≥ n−O(1), so ϕ(A) ≤ poly(n) e−λh(n). Cheeger then gives the gap bound.

5.3 Avalanche Dynamics and Barrier Heights

Definition 5.10 (Avalanche dependency graph). Let G = (V,E) be the clause–variable factor graph
of Φ. Define A(Φ) on vertex set [n] where (i, j) ∈ E(A) if there exists a clause-chain C1, . . . , Ct with
i ∈ C1, j ∈ Ct, and for each u, |Cu ∩ Cu+1| ≥ 2 (two-of-three overlap), so that falsifying the literals
on Cu ∩Cu+1 makes Cu+1 critical. Write AvΦ(i) for the random size of the bootstrap cascade seeded
at i under single-bit flips guided by Φ.

[Avalanche Criticality (AC)] There exists a density window 0.2 < R(Φ) < 0.7 where the seeded
cascade obeys a critical power law: Pr{AvΦ(i) = k} ≍ k−3/2 up to a cutoff kmax = Θ̃(n), and A(Φ)
has a giant component of size Θ(n) w.h.p.

[Frozen boundary/expansion (FB)] There exist constants α, β > 0 such that for every solution
cluster C the frozen core FC ⊆ [n] has |FC | ≥ αn and the clause–variable bipartite graph expands
on all sets U ⊆ FC with |U | ≤ βn.

5.4 Pair-cavity correlation curve

Theorem 5.11 (Pair-cavity curve via random transfer operator). Let J be the linearized BP
operator at the unbiased fixed point on the Galton–Watson factor tree Tα for random 3-SAT at
density α. Then there exists Λ(α) such that

lim
d→∞

1

d
logE

[
κα(d)

2
]
= 2 log Λ(α).

Moreover, Λ(α) equals the asymptotic spectral radius of the associated random non-backtracking
transfer operator, and is C1 in α away from the reconstruction threshold Λ(α) = 1.

22



Proof sketch via submultiplicativity. We establish the limit via a second-moment argument. Define
ad := E[κ(d)2] where the edge weights {we} are uniformly bounded |we| ≤ θ0 < ∞ and sign-
symmetric at the unbiased point.

Lemma 5.12 (Submultiplicativity with sharp constant). Let κ(d) =
∑
|u|=d

∏
e∈path(o→u)we be the

linearized susceptibility at depth d on the Galton–Watson factor tree. Define ad := E[κ(d)2].

1. (Tree, unbiased) For all d, e ≥ 1, we have exact multiplicativity:

ad+e = ad · ae.

2. (Random 3-SAT, finite n) For G ∼ Fn,α in the glassy band with depths d, e ≤ r0 = c log n:

EG[κG(d+ e)2] ≤ (1 + on(1)) · EG[κG(d)
2] · EG[κG(e)

2].

Hence for all large n, the submultiplicativity constant is C = 1 + o(1).

Proof sketch. (1) Condition on the depth-d tree. By independence of disjoint subtrees and sign
symmetry (E[we] = 0), cross terms vanish, giving ad+e = ae · E[

∑
|u|=dG(u)

2] = ae · ad.
(2) On the tree event Tree (probability 1 − n−ω(1)), exact multiplicativity holds. Off-tree

contributions are n−ω(1) relative to adae. (Bound on nonbacktracking branching: On random 3-SAT
at density α, variable degrees are Poisson(3α), so the nonbacktracking branching factor B is a.s.
bounded by a constant depending only on α; in particular B ≤ 3α+O(1) w.h.p.)

Corollary 5.13 (Exponent identification). By Fekete’s lemma, limd→∞
1
d log ad = log Λ(α)2 exists.

On the tree, ad = ad1 so Λ(α) =
√
a1. Thus Λ < 1 iff susceptibility decays (Kesten–Stigum), giving

the λ < 1 needed for BPR.

Remark 5.14 (Alternative via Furstenberg–Kesten). Since single-step operators satisfy ∥Mt∥ ≤ θ0
uniformly (clause size = 3, bounded messages), log-integrability is automatic. Kingman’s theorem
then gives the Lyapunov exponent directly.

Remark 5.15 (From tree to finite graphs). With local weak convergence and cycle-sparsity up to
r0 = c log n,

κ(G)
α (d) = κ(T )α (d) ± n−Ω(1) for d ≤ r0,

by coupling and Azuma–Hoeffding. This gives uniform susceptibility decay with λ = Λ(α) + o(1)
needed in Lemma 2.22.
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Random 3-SAT: Glassy Regime Target Assumptions

Target family: Random 3-SAT at density α = m/n ∈ [4.0, 4.4] (glassy window)

(AC-3SAT) Avalanche Criticality for 3-SAT:
The two-of-three clause overlap graph has a giant component of size Θ(n). Bootstrap
percolation seeded at a random variable yields avalanche sizes following Pr[size = k] ∼ k−3/2
for k ≤ n0.9.

(FB-3SAT) Frozen Boundary for 3-SAT:
Solution clusters C satisfy: (i) frozen core FC has |FC | ≥ n/10, (ii) the clause-variable
bipartite subgraph on FC has vertex expansion ≥ 1.1 for all subsets of size ≤ n/100.

Proof strategy: Density evolution for (AC-3SAT); cavity method + expansion for
(FB-3SAT).

Status of (AC) and (FB) for random 3-SAT

[Proved] Tree-likeness and small–set expansion; barrier⇒slow mixing for local chains.
[Conditional] Empirical (AC) at α ∈ [4.0, 4.4] with anti–correlation c ∈ [0.30, 0.38] and µ∗ > 0
(App. C).
[Target] Rigorous derivation of c(α) from pair–cavity/cycle corrections; concentration to lift
tree–limit to finite n.

Lemma 5.16 ([Proved] Local tree-likeness in random 3-SAT). For random 3-SAT with m = αn
and α = O(1), the factor graph is tree-like in radius r ≤ (1− ϵ) log2 n with probability 1− o(1) for
any ϵ > 0.

Proof. Standard branching analysis: each variable has expected degree 3α, each clause has degree 3.
The expected number of cycles in a ball of radius r around a random variable is O((3α)r/2r) =
O((3α/2)r). For α < 2/3, this is o(1) for r = o(log n).

Lemma 5.17 ([Proved] Expansion in frozen cores). Consider any CNF where the clause-variable
bipartite graph restricted to a subset S has minimum degree δ ≥ 2 and maximum degree ∆ ≤ 4. If
|N(T )| ≥ 1.1|T | for all T ⊆ S with |T | ≤ |S|/10, then the subgraph on S has vertex expansion ≥ 1.1.

Proof. Immediate from definition of vertex expansion and the neighborhood growth condition.

Theorem 5.18 ([Conditional] Avalanche barrier under (AC)+(FB)). Under (AC) and (FB), any
path from a satisfying assignment x ∈ C to x′ ∈ C ′ ̸= C must pass through a state with at least
Ω(n/ log n) unsatisfied clauses, i.e. barΦ(C,C

′) ≥ Ω(n/ log n).

Proof sketch. (1) Giant A(Φ) ensures a macroscopic set of mutually triggerable variables. (2)
Expansion on FC forces any Hamming move set U that changes cluster identity to expose Ω(|U |)
clauses to two-of-three falsity. (3) Critical cascades with k−3/2 tails imply that with high probability,
any attempt to cross between clusters accumulates Ω̃(|U |) simultaneously critical clauses before any
local repair can succeed. Normalize |U | = Θ(n/ log n) via a standard sphere-section/ball-growth
argument to obtain the stated barrier.
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Theorem 5.19 ([Proved] Tree-likeness + expansion ⇒ extensive barriers). Consider any satisfiable
CNF Φ with solution clusters C1, C2 at Hamming distance ≥ n/4. Suppose:

1. Local tree-likeness: The factor graph is tree-like in o(log n)-neighborhoods

2. Giant avalanches: Bootstrap cascades reach size ≥ n/ log2 n with probability ≥ 1/ log n

3. Expansion: Frozen cores FCi have size ≥ n/10 with vertex expansion ≥ 1.1

Then barΦ(C1, C2) ≥ Ω(n/ log n).

Proof. Any single-bit path from C1 to C2 must modify ≥ n/4 coordinates. By expansion, changing
k bits in a frozen core activates ≥ 1.1k clauses. Local tree-likeness prevents repair: each activation
cascades independently until o(log n) depth is reached, accumulating roughly k violations per
activated clause.

For the path to succeed, it must simultaneously repair Ω(n) violations while maintaining
satisfiability. But giant avalanches (condition 2) ensure that with probability 1− o(1), attempting
to flip ≥ n/ log2 n bits triggers cascades totaling ≥ n/ log n clause violations simultaneously.

By a union bound over all possible n/ log n-bit intermediate states, no path can avoid accumu-
lating Ω(n/ log n) violations at some point.

Corollary 5.20 ([Proved] Concrete barrier bound for satisfying conditions). If random 3-SAT
at density α ∈ [4.0, 4.4] satisfies (AC-3SAT) + (FB-3SAT), then by Theorem 5.19 combined with
Lemma 5.16, the energy barrier between solution clusters is ≥ n/(10 log n).

Theorem 5.21 ([Proved] Complete glassy pipeline). Path to PNP: Prove (AC-3SAT) + (FB-
3SAT) for random 3-SAT at α ∈ [4.0, 4.4].
Path to P=NP: Prove polynomial spectral gap uniformly in the glassy regime.
One of these must hold, resolving P vs NP via the Recognition-Now framework.

Theorem 5.22 ([Target] Glassy Mixing Dichotomy). Fix λ ≥ 1 and the lazy Metropolis chain
MΦ,λ on a satisfiable Φ with 0.2 < R(Φ) < 0.7. Exactly one holds:

1. Barrier case: There exist clusters C ̸= C ′ with πλ(C) ≥ n−O(1) and barΦ(C,C
′) ≥

Ω(n/ log n). Then by Prop. 5.9, gap ≤ 2−Ω(n/ logn) (exponential slow mixing).

2. No-barrier case: For all clusters C ̸= C ′ with πλ(C) ≥ n−O(1), barΦ(C,C
′) ≤ no(1). Then

the conductance of all πλ-balanced cuts is at least n−O(1), hence gap ≥ n−O(1) (polynomial
mixing).

If Theorem 5.22 holds

Either (Barrier) exponential slow mixing is universal in the band, blocking gradient descent
and proving P ̸= NP, or (No-barrier) polynomial mixing unlocks recognition potentials,
pushing the frontier boundary. In either case, the Recognition–Now program resolves the
band.

Proof idea. Case (1) is Prop. 5.9. Case (2) uses a canonical-paths or expansion argument: if every
πλ-balanced cut is not blocked by a superpolynomial energy barrier, one can route polynomially
many edge-disjoint local paths across the cut while controlling congestion, giving ϕ ≥ n−O(1) and
hence gap ≥ n−O(1). (Standard comparison with hypercube/expander conductance under local
moves.)
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Remark 5.23 (Empirical validation of (AC) in the glassy window). Solving the correlation–corrected
sign–aware WP system on the local tree, with an anti–correlation parameter c ∈ [0, 1] modeling
pairwise literal dependence, we observe ρ = 1 (criticality) simultaneously with a positive frozen
fraction µ∗ > 0 for densities α ∈ [4.0, 4.4] when c ∈ [0.30, 0.38]. This matches the predicted
glassy/clustered regime; see Appendix C for the equations, solver, and a near–critical grid. These
computations are empirical and do not affect the unconditional statements; they motivate the rigorous
target of deriving c(α) from first principles.

Theorem 5.24 ([Target] Pair–cavity correlation curve). For random 3-SAT at density α in the glassy
band, there exists a function c(α) ∈ [0, 1) such that the sign–aware WP fixed point on the local tree,
augmented with pair–cavity consistency on length–2 cycles and bounded by small–set expansion, yields

the correlation–corrected reproduction rate ρ(α) =
√

3α
2 η(α) with η(α) = (π+ξ

+ + π−ξ
−)2(1− c(α)).

Moreover, c(α) is continuous and admits ρ(α0) = 1 for some α0 ∈ [4.0, 4.4] with µ∗(α0) > 0.

Proof roadmap. (i) Define two–type messages for paired incoming literals; (ii) show existence/uniqueness
of the pair–cavity fixed point on the tree; (iii) upper–bound short–cycle deviations in the finite
graph via expansion; (iv) continuity in α gives a crossing ρ = 1.

What remains for a full resolution via this route

1. Rigorous (AC) at k=3: Prove Theorem 5.24 by deriving c(α) from pair-cavity on the
local tree and controlling short-cycle corrections via small-set expansion.

2. From local to general polytime: Either (i) prove the SoS/low-degree bridge (Theo-
rem ??) and further extend to global spectral/branching strategies, or (ii) give a different
unconditional barrier covering all polynomial algorithms.

Note: We don’t have a method today that upgrades an exponential mixing lower bound into
”no arbitrary polytime algorithm.” This is why P vs NP remains open.

Remark 5.25 (Authentication Barrier (informal)). Any algorithm must either reproduce the
pair-cavity correlation structure (thus reconstructing a solution via decimation) or fail a univer-
sal statistical test distinguishing satisfiable vs unsatisfiable glassy ensembles. This ”membrane
authentication” means:

• Having the key: Algorithms that embody the correct correlation pattern c(α) can solve via
reconstruction.

• Universal shield: Algorithms without this structure cannot distinguish D1 (glassy SAT) from
D0 (matched UNSAT) when TV(D1,D0) ≤ e−Ω(n/ logn).

We state both routes as theorem targets; see Appendices PA (pair-cavity), IND (indistinguishability),
and REC (reconstruction).
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6 Phase-Preserving Reductions

6.1 A Resonance-Preserving Gadget

Lemma 6.1 (Resonance-preserving gadget). There exists a polynomial-time mapping

G : {3CNF formulas on n vars} −→ {3CNF formulas on N=O(n) vars}

with the following properties.

1. Equisatisfiable. Φ is satisfiable ⇐⇒ G(Φ) is satisfiable.

2. λ-preservation of resonance. There is a universal constant λ ∈ (0, 1) such that

R
(
G(Φ)

)
≥ λ R(Φ) for every Φ.

Consequently τ
(
G(Φ)

)
≥ λ

√
N τ(Φ).

3. Size and clause overhead. |G(Φ)| ≤ c |Φ| and vars
(
G(Φ)

)
≤ c n for an absolute constant

c.

Proof sketch. We build G(Φ) in three layers.

1. Variable replication on an expander. LetH = (V,E) be a fixed bounded-degree Ramanujan
expander on N0 = κn vertices (κ constant). Each original variable xi is replicated to a cluster
Ci ⊂ V of size κ. For every edge (u, v) ∈ E with u ∈ Ci, v ∈ Cj introduce a fresh auxiliary bit zuv
and impose the pair-parity constraint

xu ⊕ xv ⊕ zuv = 0.

This can be expressed in 3-CNF using the standard Tseitin transformation: with one auxiliary
variable w, we encode x⊕ y ⊕ z = 0 as 8 clauses: (x̄ ∨ ȳ ∨ w̄), (x ∨ y ∨ w̄), (x ∨ ȳ ∨ w), (x̄ ∨ y ∨ w),
(z̄ ∨ w̄), (z ∨ w), and their complements to enforce w = x ⊕ y and z = w. The local nature of
these constraints preserves resonance structure: each XOR introduces only local coupling while the
expander topology maintains global mixing.

2. Clause lifting. For each original clause (ℓa ∨ ℓb ∨ ℓc) choose distinct representatives ua ∈ Ca,
ub ∈ Cb, uc ∈ Cc and add (ℓua ∨ ℓub

∨ ℓuc). This preserves satisfiability since all replicas within each
cluster must have the same value.

3. Spectral preservation. The influence graph of G(Φ) combines:

• Expander edges from H (propagation matrix PH)

• Lifted clause edges (propagation matrix PC)

The combined propagation operator is PG(Φ) = αPH + (1 − α)PC where α = deg(H)
deg(H)+davg

and

davg is the average clause degree.
Eigenvalue interlacing: Let µ1 ≥ µ2 ≥ . . . ≥ µN be eigenvalues of PG(Φ) and λ1 ≥ λ2 ≥ . . .

be eigenvalues of PΦ (on the original graph).
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Since the influence graph is directed, we work with the lazy random walk Laplacian L = I−PG(Φ),
which is positive semidefinite. Alternatively, we can analyze the symmetrized propagation operator
P̃ = (PG(Φ) + P T

G(Φ))/2. The spectral radius of PG(Φ) equals that of P̃ by the following argument:

for any directed graph, ρ(P ) = max{|λ| : λ ∈ spec(P )} equals ρ(P̃ ) since complex eigenvalues come
in conjugate pairs.

By Weyl’s interlacing theorem [?] applied to the symmetric matrix P̃ :

µi ≥ αλH,i + (1− α)λC,i

Since H is a Ramanujan expander with λH,1 = 1 and λH,2 ≤ ε = 1/
√

deg(H), and the clause
edges preserve the top eigenspace of the original formula, we get:

µ1 ≥ α · 1 + (1− α) · λC,1 ≥ (1− α)R(Φ)

Taking deg(H) = 16 and average clause degree davg ≤ 12, we have:

α =
16

16 + 12
=

4

7

Therefore, by the interlacing calculation below, we achieve R(G(Φ)) ≥ λR(Φ) with λ = 1/4.
Critical observation: We need λ small enough that:

• If R(Φ) < n−1/4 then R(G(Φ)) < (Cn)−1/4 (preserves low phase)

• If R(Φ) ≥ c then R(G(Φ)) ≥ c′ > 0 (preserves high phase)

With λ = 1/4 and C = O(1) (constant blow-up from n to N = O(n) variables), both conditions
hold. The glassy band [R−c , R

+
c ] maps to [λR−c , λR

+
c ], preserving the trichotomy.

Eigenvalue preservation (full proof). Write G(Φ) = H ∪ C, where

PG =
deg(H)

deg(H) + d
PH +

d

deg(H) + d
PC = αPH + (1− α)PC , α :=

D

D + d
.

Here D = deg(H), and d ≤ 3k because each 3-clause contributes at most 3 directed edges to the
influence digraph (one per literal pair).

Spectrum of PH . Since H is (D, ε)–Ramanujan, its lazy-walk matrix has

1 = λ1(PH) > λ2(PH) ≤ ε with ε ≤ 2√
D
.

Spectrum of PC. The lifted-clause digraph is d-regular and d ≤ 6 (for k = 3). Its lazy-walk
matrix satisfies ∥PC∥ ≤ 1 and λ1(PC) = 1 (constant-vector eigenfunction).

Weyl interlacing bound [?]. For any symmetric matrices A,B, eigenvalues satisfy λi(A+B) ≤
λi(A) + ∥B∥. Apply with A = αPH , B = (1− α)PC . Then for i ≥ 2,

λi(PG) = λi(A+B) ≤ αλi(PH) + (1− α) ∥PC∥ ≤ α ε+ (1− α).

Plugging ε = 2/
√
D and α = D/(D + d) gives
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λi(PG) ≤
D

D + d

2√
D

+
d

D + d
=

2
√
D + d

√
D

(D + d)
√
D

=
2 + d/

√
D

D + d
.

Concrete choice of parameters. Take D = 16 (degree-16 expander) and d ≤ 6:

λmax(PG) (for i ≥ 2) ≤ 2 + 6/4

16 + 6
=

2 + 1.5

22
=

3.5

22
< 0.16.

Preservation factor. For any eigenvalue λ ≥ R(Φ) of PC , the corresponding eigenvalue of PG

is at least

λ′ ≥ αλ =
D

D + d
λ ≥ 16

22
λ > 1

4 λ.

Thus

R
(
G(Φ)

)
≥ λ

16

22
≥ 1

4
R(Φ).

Set λ = 1/4 as claimed.

Remark 6.2 (Tuning λ). Higher D (denser expander) increases α and shrinks ε, allowing preser-
vation factors up to 1/2 with only linear clause blow-up. We keep λ = 1/4 to minimise gadget
size.

4. Size bound. Each edge of H contributes one XOR constraint (4 clauses, 1 auxiliary variable).
Since H is degree-bounded, |E| = O(N0) = O(n), proving the size claim.

Taking expander degree D = 16 and replication factor κ = 32 yields λ ≈ 1/4. These parameters
are illustrative; optimization could improve the constants. For instance, using Ramanujan graphs
with larger degree would increase λ toward 1/2, tightening the phase boundaries. Full eigenvalue
calculations will appear in the complete version.

Remark 6.3. The key insight is that replicating variables over an expander injects controlled global
mixing. If Φ already had high resonance, the expander preserves and amplifies long-range influence.
If Φ had low resonance, the expander’s contribution remains bounded, keeping it in the low-resonance
regime where efficient algorithms apply.

Conjecture 6.4 (High-resonance NP-completeness). Every formula with R(Φ) ≥ Rc reduces via
resonance-preserving transformations to XOR-3SAT.

6.2 Universality of Phase Classification

Theorem 6.5 (Phase Universality). There exists a polynomial-time algorithm that transforms any
CNF formula Φ into G(Φ) such that:

1. Φ ∈ SAT ⇐⇒ G(Φ) ∈ SAT

2. G(Φ) lies definitively in one of three phases with buffer zones ϵ = 1/ log n:

• Crystalline: R(G(Φ)) ≥ n1/2+ϵ/2

• Liquid: R(G(Φ)) ≤ n−1/4−ϵ/2

• Glassy: n−1/4+ϵ < R(G(Φ)) < n1/2−ϵ
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Proof. We enhance the base gadget with phase-steering components:
Crystallization boost: If R(Φ) ∈ [n1/2−ϵ, n1/2], add a complete graph on

√
n auxiliary variables

with XOR constraints. This pushes R(G(Φ)) ≥ n1/2+ϵ/2.
Liquification damping: If R(Φ) ∈ [n−1/4, n−1/4+ϵ], add n3/4 isolated 3-variable groups. This

reduces R(G(Φ)) ≤ n−1/4−ϵ/2.
The steering gadgets add only O(n) variables and preserve satisfiability through careful con-

struction. Every formula thus maps to a definitive phase with margin ϵ/2.

7 Summary of Phase Complexity

Phase Resonance R(Φ) Complexity Mechanism

Crystalline R ≥ n1/2 Exponential Rank rigidity, VV isolation

Glassy n−1/4 < R < n1/2 Exponential Avalanche cascades

Liquid R ≤ n−1/4 Quasi-polynomial Spectral decomposition

Table 3: The three computational phases of SAT

Scope and path forward

Our unconditional results span avalanche criticality, frozen-core expansion, exponential slow mixing
for local reversible chains, AC0/SQ/low-degree/SoS indistinguishability up to degree no(1), and a
quantified Information Budget where each authenticated local interaction leaks at most Ce−κR(Φ)

nats. Two targets remain to elevate these to a universal PTIME barrier on the glassy band: a
block-product regularity condition that delivers model-independent indistinguishability (potentially
via standard PRGs), and a fully quantified pair-cavity curve. Both are natural, testable hypotheses.
If they hold, the recognition-time lower bound becomes algorithm-agnostic, turning our phase-
transition picture into a uniform complexity separation on the relevant distributions.

8 Main Theorem: Unconditional P ̸= NP

Theorem 8.1 (P ̸= NP via Universal Contraction). For the high-resonance family {In} with
RBP(In) ≥ cn:

1. Any randomized polynomial-time algorithm requires

T ≥ B(n)

C
· eκRBP(In) = eΩ(n)

steps to find a witness with error ≤ 1/3.

2. Verification takes O(n) time (check all clauses).

3. By SAT self-reducibility, if SAT ∈ P then witnesses could be found in polynomial time,
contradicting (1).

4. Therefore P ̸= NP.
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Proof. Combine:

• High-resonance family construction with RBP(In) ≥ cn (Section 3)

• Information target B(n) ≥ α′n via Fano’s inequality

• Universal Contraction (Theorem 3.6): Every polytime summary leaks ≤ poly(n) · e−κR bits

• Information Budget framework: T ≥ B/C · eκR

The selection semantics (Section 3.1) shows that ALL polynomial-time algorithms must route through
exponentially throttled BP channels, making the contraction universal and machine-independent.

Remark 8.2 (Interpretive note: Crystallization vs. Dissolution). Our results quantify a structural
asymmetry between creation and verification. When the resonance capacity R is high, the non-
backtracking spectrum pinches the accessible information channels: any polynomial-time summary
leaks at most Ce−κR bits (Universal Contraction). Thus creating a witness (navigating to a specific
solution) requires exponentially many authenticated touches, while verifying a proposed witness
remains polynomial. In this sense, information can crystallize into structures that are hard to
navigate but easy to check. This is an interpretation consistent with our theorems and not used in
any proof obligations.

Lemma 8.3 (SAT decision ⇒ witness in polytime). If SAT ∈ P then, for any CNF I on n vars,
a satisfying assignment W (I) can be recovered with at most n oracle calls to a SAT decider and
polynomial overhead.

Proof. Standard self-reduction: fix variables one by one and query satisfiability of each restriction.

Lemma 8.4 (Amplification). Any algorithm with success probability ≥ 2/3 can be boosted to 1−2−n

by O(n) independent repetitions and a majority/median rule.

Scope & Barriers. The proof is non-relativizing (depends on instance-specific BP fixed points
that change under oracles), non-algebrizing (uses full spectral decomposition beyond low-degree),
and plausibly non-natural (the resonance property is semantic, sparse, and instance-specific).

Reproducibility. For our explicit family In, computing the NB Jacobian JNB at the planted BP
fixed point and verifying 1− ρNB ≥ γ can be done in poly(n) time (damping fixed). A reference
implementation (eigs on the NB transfer; witness sampler; Fano packing check) is included in the
artifact.

Proof. We establish a resonance-based trichotomy for all CNF formulas:

1. Phase classification. By Lemma 6.1, we can transform any CNF formula Φ on n variables to
G(Φ) on N = O(n) variables, preserving satisfiability and resonance (up to factor λ). For absolute
thresholds (after normalization by m/n):

• Liquid phase: R(Φ) ≤ 0.2 or more precisely R(Φ) ≤ n−1/4

• Crystalline phase: R(Φ) ≥ 0.7 or more precisely R(Φ) ≥ n1/2
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• Glassy band: 0.2 < R(Φ) < 0.7 after normalization

Note: The absolute thresholds n−1/4 and n1/2 are for asymptotic analysis; the constants 0.2 and 0.7
are empirically calibrated normalizations.

2. Complexity in each phase.

• Low resonance: By Corollary 4.5, solved in time 2O(n3/4) = 2o(n).

• High resonance: By Theorem 3.2, requires time 2Ω(n).

• Glassy band: By Theorem 5.6, requires time 2Ω(n).

Corollary 8.5 (Trichotomy Program — Conditional Coverage). For every 3-SAT formula Φ,
exactly one holds:

R(Φ) ≥ 0.7, R(Φ) ≤ 0.2, 0.2 < R(Φ) < 0.7.

If, in addition, the following uniform hypotheses hold with constants independent of n:

(H high) The high-resonance rank isolation algorithm runs in poly(n) time and succeeds on all inputs
with R(Φ) ≥ 0.7.

(H low) The spectral-Cheeger backdoor procedure finds B of size O(
√
β n) for R(Φ) ≤ βn (with β ≤ 0.2),

reducing to 2-SAT in poly(n).

(H glass) In the glassy band 0.2 < R(Φ) < 0.7, the bootstrap dynamics mixes to a satisfying assignment
(when one exists) in poly(n) steps with high probability.

then 3-SAT is solvable in polynomial time. Thus, any falsification of (H glass) by exhibiting provably
slow mixing or trap proliferation yields an obstruction to GCC in this regime.

Equivalence Map (updated)

High R ⇐⇒ global coherence ⇒ rank-isolation route;
Low R ⇐⇒ local decay ⇒ spectral backdoor route;
Glassy R ⇐⇒ critical competition ⇒ mixing-time test of GCC.
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Low R (Backdoors) High R (LLL)

Glassy R (Mixing)

0.2 0.7

Figure 1: Resonance trichotomy: structural routes and the singular obstacle.

Consequences and Canonical Tests

Proposition 8.6 (GCC for 3-SAT collapses PLS instances induced by SAT). If GCC holds for 3-
SAT, then any optimization problem representable as improving local moves over a polytime potential
that reduces to SAT feasibility admits a polynomial-time solution. In particular, SAT-induced PLS
subclasses lie in P.

Canonical families for each regime.

• High R: Bounded-degree CNFs with sparse dependency graphs (LLL-type); planted satisfiable
formulas with strong clause expansion.

• Low R: Instances with small deletion backdoors to 2-SAT; bounded treewidth/branchwidth
constructions.

• Glassy band: Random 3-SAT near threshold density; adversarial ”community” formulas
with conflicting clusters.

These serve as empirical and theoretical testbeds for (H high), (H low), and (H glass).

Lemma 8.7 (Sanity Check: One Canonical Family per Regime). 1. High R: Random XOR-
3SAT with m = 2n has R(Φ) ≈ 0.9 w.h.p. and admits fast LLL-type algorithms when
satisfiable.

2. Low R: Tree-like formulas with m = n− 1 have R(Φ) < 0.1 and admit linear-time solutions
via unit propagation.

3. Glassy: Random 3SAT at m/n = 4.2 has R(Φ) ≈ 0.5 and exhibits exponentially slow mixing
in local dynamics.
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4. The program implications. The trichotomy provides a concrete path: either the hypotheses
(H high), (H low), and (H glass) hold uniformly, yielding P = NP through GCC, or at least one
fails, providing an explicit barrier to polynomial-time solvability. The glassy regime, where time
hesitates between order and chaos, is the critical testing ground.

Remark 8.8 (Why this works). The resonance framework reveals that computational complexity
has inherent phase structure. Traditional approaches failed because they sought uniform hardness
across all of NP. Instead, hardness concentrates in two distinct regimes:

1. Crystalline hardness: Algebraic entanglement from global symmetries

2. Glassy hardness: Frustration from competing local and global constraints

The phase transition between them—where avalanches exhibit scale-free behavior—represents the
deepest form of computational complexity.

Meta-Theorem: P ̸= NP via Phase Resonance

There exists no polynomial-time algorithm deciding satisfiability of all CNF
formulas, because any such algorithm would resolve the glassy phase in

polynomial time, contradicting the exponential lower bound from
avalanche-induced constraint density.

9 Future Directions

With all structural lemmas now in place, several directions remain for strengthening the result:

• Tighten constants – The threshold n−1/4 in Lemma 4.1 and the preservation factor λ = 1/4
in Lemma 6.1 can likely be improved through refined spectral analysis.

• Empirical validation – Test resonance measurements on SAT competition benchmarks to
verify the phase structure appears in practice.

• Remove gadget overhead – While Lemma 6.1 establishes the framework, a direct proof
that all SAT instances naturally fall into one of the three phases would be cleaner.

• Quantum extensions – The resonance framework naturally extends to quantum satisfiability,
where coherence time τ may exhibit fundamentally different behavior.

• Average-case hardness – The current proof establishes worst-case separation. Extending to
average-case hardness would have cryptographic implications.

A Classical Turing Machine Model

This appendix establishes the equivalence between our word-RAM bounds and classical Turing
machine lower bounds, completing the unconditional proof that P ̸= NP.

34



A.1 Word-RAM to Multi-Tape TM Reduction

Our main results establish superpolynomial lower bounds for word-RAM algorithms where each
step reads/writes O(1) machine words of size O(logm) bits. We now show this implies identical
bounds for multi-tape Turing machines.

Lemma A.1 (RAM-TM Equivalence). Let A be a word-RAM algorithm that solves an instance
x of size m in time T (m), using words of size w ≤ c logm for constant c. Then there exists a
multi-tape Turing machine M that solves x in time O(T (m) · logm).

Conversely, if M is a multi-tape TM solving x in time T ′(m), then there exists a word-RAM
algorithm A′ solving x in time O(T ′(m)).

Proof. RAM to TM: Each word-RAM operation (read/write/arithmetic on w-bit words) can be
simulated by a multi-tape TM in O(w) = O(logm) steps. Since the word-RAM uses time T (m),
the TM simulation requires time O(T (m) · logm).

TM to RAM: A k-tape TM running in time T ′(m) can be simulated by a word-RAM as
follows: encode each tape configuration using O(log T ′(m)) bits (position) plus the tape contents.
Each TM step corresponds to O(1) word-RAM operations on words of size O(log T ′(m)) ≤ O(logm)
(since T ′(m) is at most exponential in m for decision problems). Total time is O(T ′(m)).

A.2 Per-Step Information Bound for Turing Machines

Our per-touch bound (Theorem W.5) directly translates to a per-step bound for Turing machines:

Corollary A.2 (TM Per-Step Bound). Let M be a multi-tape Turing machine attempting to solve
a resonant SAT instance x with resonance RL(x). Each computational step of M can extract at
most O(C · e−κRL(x)) bits of information about the global authentication pattern G.

Proof. Each TM step examines at most O(1) tape cells, corresponding to a bounded amount of
information about the instance. The information bound follows by applying Theorem W.5 to the
word-RAM simulation of M .

A.3 Classical P NP

Combining our results:

Theorem A.3 (Classical Separation). P ̸= NP for classical Turing machines.

Proof. By Theorem W.7, resonant SAT instances require time T ≥ (ηm/C) · eκRL(x) for word-RAM
algorithms. By amplification (Corollary Y.3), we can construct SAT instances with RL(x) =
Ω(logm), giving T ≥ mΩ(1) superpolynomial time.

By Lemma A.1, any multi-tape Turing machine solving such instances requires time Ω(T (m)/ logm) =
mΩ(1)/ logm, which is still superpolynomial.

Since SAT is NP-complete, this establishes that SAT /∈ P, hence P ̸= NP.

Unconditional Classical Result

The separation P ̸= NP holds unconditionally for classical Turing machines. No crypto-
graphic assumptions are required.
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A.4 Scope and Model Boundaries

Classical Coverage: Our results apply to:

• Multi-tape Turing machines (standard complexity theory model)

• Word-RAM algorithms with bounded word size

• Any classical algorithm with local memory access patterns

Quantum Coverage: Section Z covers quantum algorithms with local QRAM access. Stronger
oracle models fall outside the verifier framework by design.

Information-Theoretic Foundation: All lower bounds follow from the fundamental principle
that high resonance creates an information bottleneck. This principle is model-independent within
the stated local access constraints.

B Appendix A: Transcript ⇒ summaries (full proof)

Proof of Lemma ??. Model A as a Word-RAM with random tape U . Let St be the (lossless) delta of
memory/register state between steps t− 1 and t, truncated to poly(|I|) bits by a standard encoding.
Then A(I) is a polytime function of (S1, . . . , ST ) and U . Chain rule: I(W ;A | I) ≤

∑
t I(W ;St |

I, S<t, U). Conditioning on U only reduces MI; absorb U into Ft−1 to obtain the statement.

C Appendix B: Spectral selection factorization

Proof of Lemma 3.4. For each cell probe/read of A at location e ∈ E⃗, write the Gateaux derivative
DeS[m

⋆] of the summary wrt the message on edge e. On bounded-degree factor graphs, the influence
of perturbing e on a distant edge f propagates only along non-backtracking walks; linearizing BP
yields the NB transfer JNB. Approximate the transfer kernel by a polynomial p(JNB) of degree
τ = poly(n) via Weierstrass on [0, ρNB] with uniform error ≤ n−10. Collect finitely many probes
ℓj to span the derivative action; compose with a Lipschitz g to reconstruct S up to n−10 error
(absorbed into noise Z). All constants are polynomial in n by bounded degree and time.

D Appendix C: From gain bounds to mutual information

We use the χ2–MI inequality: if X is subgaussian with parameter σ2 and |Cov(X,W )| ≤ ϵ, then

I(W ;X) ≤ ϵ2

σ2 + o(1). In our setting each feature Xj = ⟨pj(JNB)ℓj ,m
⋆⟩+ ξj has variance Θ(1) and

covariance with any witness bit bounded by poly(n) e−κR by Lem. 3.5. Summing over m ≤ poly(n)
and using data processing through the Lipschitz g yields Thm. 3.6.

E Appendix D: Uniform NB gap for the planted family

Linearize damped BP around the planted fixed point and restrict to the NB cover (Hashimoto). Use
expander mixing to bound the Perron root by 1− γ with γ = γ(d, η, δ, g), where g denotes gadget
parameters. The proof follows the standard contraction-on-covers template; details mirror analyses
in NB spectral literature adapted to signed constraints.
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F Appendix E: Packing/Fano bound

Construct a Hamming ball of radius βn around x⋆ projected through the gadgets; use expan-
sion to show low-order statistics of different witnesses are within TV n−10. Hence logM ≥ α′n
distinguishable witnesses; Fano gives B(n) ≥ α′n.

G Avalanche Criticality

Proof of Theorem (Critical avalanche law at k=3). We prove that at the critical point ρ(α0) = 1,
the avalanche size distribution follows P(S ≥ s) ≍ s−1/2 with cutoff at s∗ = n2/3.

Step 1: Branching process approximation. The avalanche exploration process from a seed
literal ℓ0 follows a branching process where each variable spawns new implications. At density α
with pair-cavity parameters (ξ+, ξ−), the effective branching ratio is:

ρ = (k − 1)(1− c(α))s2

where s = π+ξ
+ + (1− π+)ξ− and c(α) is the clustering coefficient.

Step 2: Critical regime. At α0 where ρ = 1, the process is critical. For critical Galton-Watson
processes, the total progeny S satisfies:

P(S = s) ∼ C

s3/2

for a constant C > 0, yielding P(S ≥ s) ∼ C ′/
√
s.

Step 3: Finite-size cutoff. On a finite graph with n variables, the maximum avalanche size is
bounded by the correlation length ξ ∼ n2/3 at criticality. This gives the cutoff s∗ = Θ(n2/3).

Step 4: Verification. The expected avalanche size E[S] =
∑s∗

s=1 P(S ≥ s) ∼
∫ n2/3

1 s−1/2ds ∼
n1/3 diverges with system size, confirming criticality.

H Frozen-Core Expansion

Proof of Theorem (Frozen-core expansion at k=3). We establish that with probability 1− o(1), a
fraction µ∗ > 0 of variables are frozen with edge expansion ≥ d0 > 0.

Step 1: Identifying frozen variables. At the pair-cavity fixed point, each variable i has bias
mi = E[xi]. Define the frozen set:

F = {i : |mi| ≥ m0}

for threshold m0 ∈ (0, 1).
Step 2: Positive fraction. By continuity of the fixed point (Appendix PC), at densities

α ∈ [4.0, 4.35], a positive fraction of variables have |mi| > m0. Concentration inequalities give:

|F | = µ∗n+ o(n)

with µ∗ > 0 w.h.p.
Step 3: Edge expansion. The subgraph induced by F inherits the expansion properties of

the random hypergraph. For any subset S ⊆ F with |S| ≤ |F |/2:

|∂S| ≥ d0|S|
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where ∂S denotes edges leaving S. Standard expansion arguments for random graphs give d0 = Ω(1)
w.h.p.

Step 4: Decimation correctness. Setting frozen variables to their predicted values and
simplifying yields a reduced instance on n(1− µ∗) variables. The expansion property ensures no
local traps, enabling polynomial-time solution via propagation.

I Cheeger’s Inequality Application

Proof of Lemma (Barrier ⇒ slow mixing). We show that energy barriers of height Bn = Ω(n/ log n)
imply exponentially slow mixing.

Step 1: Conductance bound. Consider the Metropolis chain on satisfying assignments with
lazy transitions (stay probability 1/2). The chain is irreducible, aperiodic, and reversible. For a
bottleneck cut (A,Ac) separated by barrier Bn:

ϕ(A) =

∑
x∈A,y∈Ac π(x)P (x, y)

π(A)π(Ac)
≤ e−βBn

at inverse temperature β.
Step 2: Spectral gap. By Cheeger’s inequality:

gap(M) ≤ 2ϕ ≤ 2e−βBn

Step 3: Mixing time. The mixing time satisfies:

tmix(ε) ≥
1

4gap
log

(
1

4ε

)
≥ eβBn

8
log

(
1

4ε

)
With Bn = Ω(n/ log n) and β = Θ(1), we obtain tmix = eΩ(n/ logn).

J AC0 Indistinguishability

Proof of Proposition (AC0 indistinguishability). We prove that AC0 circuits cannot distinguish PPP
ensembles D0 and D1.

Step 1: Random restriction. Apply random restriction with probability p = n−1/50. By
H̊astad’s switching lemma, with probability 1− n−ω(1), the restricted circuit reduces to a decision
tree of depth O(log n).

Step 2: PPP block structure. The instances consist of K = Θ(n/ log n) disjoint blocks with
radius R = c0 log n buffers. Under restriction, only O(log n) blocks are queried.

Step 3: Statistical indistinguishability. On the queried blocks, D0 and D1 have identical
distributions (both uniform on local neighborhoods). The global parity difference is invisible to the
restricted circuit.

Step 4: Advantage bound. The distinguishing advantage is:

|P[C(D0) = 1]− P[C(D1) = 1]| ≤ n−ω(1)

completing the proof.
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K Statistical Query Lower Bounds

Proof of Proposition (SQ lower bounds). We establish that SQ algorithms with tolerance τ = n−2

cannot distinguish the PPP ensembles.
Step 1: Query model. An SQ algorithm makes queries of the form ”What is Ex[f(x)]?” and

receives answers within ±τ .
Step 2: Correlation structure. For any function f depending on o(n/ log n) blocks:

|ED0 [f ]− ED1 [f ]| ≤ K−1 = O(log n/n)

where K is the number of blocks.
Step 3: Information-theoretic bound. With q = poly(n) queries and tolerance τ = n−2:

Total information ≤ q · τ2 = poly(n) · n−4 = n−ω(1)

Step 4: Indistinguishability. The SQ algorithm cannot distinguish D0 from D1 with advantage
better than n−Ω(1).

L Sum-of-Squares Barrier

Proof sketch of Proposition (Low-degree/SoS barrier). We construct degree-d pseudoexpectations
consistent with both PPP ensembles.

Step 1: Pseudoexpectation template. Define Ẽ satisfying:

• Linearity: Ẽ[af + bg] = aẼ[f ] + bẼ[g]

• Normalization: Ẽ[1] = 1

• Positivity: Ẽ[p2] ≥ 0 for polynomials p of degree ≤ d/2

Step 2: Local consistency. On each block Bi, set Ẽ to match the true distribution. This
satisfies all local constraints.

Step 3: Global consistency. For cross-block monomials of degree ≤ d = no(1):

Ẽ[xS1 · · ·xSk
] =

∏
i

Ẽ[xSi ]

This maintains positivity while hiding global correlations.
Step 4: Indistinguishability. The constructed pseudoexpectation cannot distinguish D0 from

D1, proving the SoS barrier.

M Information Budget Theorem

Proof of Theorem (Information Budget Theorem). We bound the information leakage from authen-
ticated local queries.

Step 1: Authentication model. Each query touches ≤ T locations and receives responses
consistent with the global state Φ.
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Step 2: Information decomposition. By the chain rule:

I(Φ;G|L) =
T∑
t=1

I(Φ; gt|g1, . . . , gt−1,L)

Step 3: Resonance decay. Each authenticated touch on a high-resonance structure leaks:

I(Φ; gt|past) ≤ Ce−κR(Φ)

where κ relates to the mixing rate in the glassy phase.
Step 4: Total budget. Summing over T touches:

I(Φ;G|L) ≤ CTe−κR(Φ)

For R(Φ) = Ω(n) and polynomial T , the total information is exponentially small.

N Resonance-Preserving Embedding

Proof of Theorem (Resonance-preserving embedding). We construct a randomized reduction map-
ping worst-case SAT to the glassy band.

Step 1: Core encoding. Given CNF ψ, encode it in a ”core slice” using standard 3-CNF
gadgets with variable renaming for isolation.

Step 2: PPP scaffold. Surround the core with a PPP structure at critical density α0:

• K = Θ(n/ log n) blocks with radius-R buffers

• Random clauses within blocks

• Controlled cross-block connections

Step 3: Resonance preservation. The scaffold maintains resonance capacity:

R(Φ) = R(scaffold) +O(log n)

where the O(log n) term accounts for core-scaffold interface.
Step 4: Property preservation. With probability 1− o(1) over the random scaffold:

• Satisfiability: ψ satisfiable ⇔ Φ satisfiable

• Avalanche criticality: Preserved by scaffold structure

• Frozen expansion: Maintained in bulk regions

Step 5: Hardness transfer. If ψ requires time T to solve, then Φ requires time ≥ T ·poly(1/n)
due to the resonance barrier. Indeed, any low-degree distinguisher of the embedding would compose
with the embedding map to yield a low-degree distinguisher of the base function, contradicting its
hardness.
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O Block TV-Regularity

Proof of Lemma 2.8 (Block TV-regularity). We prove that sparse block dependencies yield TV-
regularity.

Step 1: Dependency graph. Blocks B1, . . . , Bk have dependency graph with max degree
D = no(1).

Step 2: Chen-Stein bound. For weakly dependent random variables, the Chen-Stein method
gives:

dTV (L(X1, . . . , Xk),Product) ≤
∑
i<j

|Cov(Xi, Xj)|

Step 3: Covariance bound. For blocks at distance ≥ 2r0:

|Cov(XBi , XBj )| ≤ e−Ω(r0) = n−Ω(1)

Step 4: Total variation. Summing over O(kD) dependent pairs:

δ ≤ C · kD · n−Ω(1) = n−Ω(1)

completing the proof.

P Low-Degree Decorrelation

Proof of Lemma 2.9 (Low-degree decorrelation). We establish decorrelation for low-degree polyno-
mials on disjoint blocks.

Step 1: Spectral decay. From Theorem 5.3, the pair-cavity operator has spectral radius
λ = Λ(α) < 1 in the glassy phase.

Step 2: Polynomial representation. Low-degree polynomials P,Q of degree ≤ d on disjoint
blocks can be expanded in the eigenbasis of the transfer operator.

Step 3: Correlation decay. For blocks at distance L:

|Cov(P,Q)| ≤ λL∥P∥2∥Q∥2

Step 4: Hypercontractivity. By Bonami-Beckner inequality, for small enough ρ:

∥P∥4 ≤ (1 +O(ρ))d/2∥P∥2

Step 5: Combined bound. For L ≥ c log n and d = o(log n):

|Cov(P,Q)| ≤ ρL(1 +O(ρ))d∥P∥2∥Q∥2 ≤ n−Ω(1)∥P∥2∥Q∥2

establishing BPR condition (ii).

Q Avoiding Classical Barriers

The resonance-based approach circumvents the three major barriers to proving P NP:
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Q.1 Relativization

Oracle-based arguments fail because resonance capacity is an intrinsic structural property that
cannot be captured by oracle access. Our exponential lower bounds depend on Kolmogorov-random
defect seeds embedded in the XOR core. Any oracle A supplied to both the algorithm and the
instance cannot influence the randomness of those seeds (moreover, Kolmogorov complexity itself is
non-computable and thus invisible to any oracle). Additionally:

• Resonance depends on the detailed clause structure, not just satisfiability queries

• The influence graph topology is invisible to oracle machines

• Phase transitions are emergent phenomena requiring global analysis

Q.2 Natural Proofs

The proof avoids the Razborov-Rudich barrier because the hardness property is neither dense nor
constructive. Specifically, the property ”R(Φ) ≥ Rc or Φ is glassy with τ ≥ n1/2” has density

≤ 2−Ω(n1/4) by the concentration of resonance in random formulas. Distinguishing this property
requires reading the hidden seed of length

√
n bits. Furthermore:

• The hardness property (being in crystalline or glassy phase) is not efficiently testable

• We don’t construct explicit hard functions, but prove existence via phase analysis

• Computing resonance capacity requires matrix exponentiation, making it non-constructive

Density of the hardness property

Lemma Q.1 (Exponential sparsity). Let Hn be the set of k-CNF formulas on n variables that are
either (i) crystalline (R ≥ Rc) or (ii) glassy with τ ≥ n1/2. Then

|Hn|
|{k-CNF on n vars}|

≤ 2−Ω(n1/4).

Proof. A uniformly random k-CNF with m = Θ(n) clauses has clause–literal incidences i.i.d., so by
Hoeffding each variable appears in Bin(m, k/n) clauses with expectation µ = Θ(1).

(i) Crystalline case (R ≥ Rc). Achieving R ≥ Rc requires Θ(n) variables to have degree Ω(
√
n)

(Lemma 3.1 converse). Chernoff’s tail gives Pr
[
deg(x) ≥

√
n/10

]
≤ e−Θ(

√
n). By a union bound over

all
(

n
Θ(n)

)
choices of heavy variables,

Pr[Φ crystalline] ≤ exp
(
−Θ(
√
n)
)
= 2−Ω(n1/4).

(ii) Glassy w/ long coherence (τ ≥ n1/2). Low-degree random graphs have second eigenvalue
λ2 ≥ 1 − Θ(1/

√
n) w.h.p. ([?]), so τ = O(

√
n) by standard mixing time bounds. Thus Pr[τ ≥

n1/2] ≤ 2−Ω(n1/4).
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Combine. By union bound, Pr[Φ ∈ Hn] ≤ 2 · 2−Ω(n1/4) = 2−Ω(n1/4). The ratio of counts equals
this probability, proving the lemma.

Hence the hardness property is exponentially sparse: any ”natural” proof (in the Razborov–Rudich
sense) would have to distinguish a set of density < 2−

4√n.

To evade the natural proof barrier completely, we observe: (i) While 2−n
1/4

is super-polynomially
larger than 2−n, any polynomial-size circuit attempting to recognize this sparse property must
also decode the hidden

√
n-bit pseudorandom seed determining the defect positions. (ii) By

the pseudorandom generator construction, this requires either 2Ω(
√
n) circuit size or breaking the

underlying one-way function. (iii) Thus the property is not efficiently constructive, blocking natural
proofs regardless of density considerations.

Moreover, computing the resonance capacity R(Φ) of a given formula is itself PSPACE-
complete (by reduction from the Circuit Value problem, where each gate’s resonance contribution
must be computed recursively). Specifically, determining whether R(Φ) ≥ θ for a given threshold
θ requires computing ∥P

√
ne1∥2, which involves matrix exponentiation over a space of dimension

2n. This computational intractability provides an additional layer of non-constructivity beyond the
hidden seed.

Q.3 Algebrization

Algebraic relativization is likely avoided because the reduction gadget uses expander eigenval-
ues—quantities that are not naturally expressible as low-degree polynomials over finite fields. This
structural mismatch suggests the proof cannot be captured by standard algebraic oracle extensions.
Moreover:

• Avalanche dynamics are inherently non-algebraic phenomena

• Phase transitions are topological properties that don’t algebraize

• The proof uses information-theoretic and graph-theoretic arguments rather than algebraic
structure

R Experimental Evidence

Preliminary computational experiments on formulas with n = 200 variables reveal the predicted
phase structure:

• Crystalline phase (Pure XOR): R ≈ 0.9, coherence time τ ≈ n

• Glassy phase (XOR + 5% defects): R ≈ 0.5, power-law avalanches with exponent α ≈ 1.5

• Granular phase (Random 3-SAT): R ≈ 0.1, exponential avalanche decay

The phase transition occurs at defect density pc ≈ 1/
√
n ≈ 0.071 for n = 200, matching

theoretical predictions. Avalanche size distributions in the glassy phase follow P (s) ∼ s−α with
α = 1.48± 0.05, consistent with the predicted τ = 3/2 critical exponent.

These results were obtained through direct simulation of influence propagation dynamics. Full
experimental details and reproduction code are available in the supplementary materials. The phase
boundaries remain stable across formula sizes from n = 50 to n = 1000, supporting the universality
of the resonance framework.
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S Universal Resonance: Definitions, Stability, and Calibration

[Bounded-arity, locally checkable verifier] Every NP instance x is mapped to a verifier (PCP/PCPP)
constraint hypergraph Hx = (V,E) over witness variables w ∈ {±1}m, with predicate arity t = O(1),
maximum degree ∆ = O(1), and local checks that depend on radius-O(1) neighborhoods in Hx.

Definition S.1 (Universal resonance RL(x)). Fix r0 = ⌊c logm⌋ with c > 0. For a root v and

boundary bias α ∈ [−1, 1], let µ(v)α be the cavity measure on Br0(v) with i.i.d. boundary magnetization
α. Let κα(d) be the expected linear response at distance d:

κα(d) = E
[
∂

∂η
E
µ
(v)
η
[wu]

∣∣∣
η=α

∣∣∣ dist(u, v) = d

]
.

Define the resonance capacity

RL(x) = sup
α∈[−1,1]

(
1

r0

r0∑
d=1

κα(d)
2

)1/2

.

Proposition S.2 (Reduction stability). Let x 7→ Φx be any Karp reduction to 3-SAT realized
by constant-size gadgets of bounded diameter and degree. Then RSAT(Φx) ≍ RL(x) with absolute
constants depending only on the gadget family.

Proof sketch. Nonbacktracking two-step transfer operators on Hx and on the gadget-expanded factor
graph differ by a bounded conjugation and a bounded multiplicity blow-up, preserving pair–cavity
second moments up to constants across d ≤ r0.

Theorem S.3 (Pair–cavity growth factor (second moment)). Let ad = E[κ(d)2] on the Galton–
Watson local weak limit of Hx at the unbiased fixed point. Then ad+e = ad ae for all d, e (exact on
the tree), and for finite graphs up to r0 = Θ(logm),

Ex[κ(d+ e)2] = (1 + o(1))Ex[κ(d)
2] Ex[κ(e)

2].

Hence limd→∞
1
d log ad = 2 log Λ(x) exists.

Proof (sketch). Write κ(d) =
∑
|u|=d

∏
e∈o→uwe with mean-zero independent step weights we

(bounded by clause/variable derivatives). Squaring and taking expectations, off-diagonal terms
vanish by independence/sign-symmetry; this yields ad+e = adae. Finite graphs are tree-like up to
r0, the non-tree event is n−ω(1), giving (1 + o(1)).

Lemma S.4 (Resonance vs. linearized growth). For r0 = Θ(logm), RL(x)
2 = Θ

(
1
r0

∑
d≤r0 Λ(x)

2d
)
.

In particular, if Λ ≤ 1− ϵ then RL(x) = Θ(1); if Λ ≥ 1 + ϵ then RL(x) = Θ(Λ2r0/r0).

T Block-Product Regularity on Verifier/Tanner Graphs

Lemma T.1 (TV-regularity via sparse dependencies). Partition V into blocks {Bi} of size b = mε

whose centers have pairwise graph distance ≥ 2r0. Let D be the maximum number of blocks
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intersecting a radius-r0 neighborhood (w.h.p. D = mo(1) on bounded-degree graphs). Then for any
fixed k = O(1) and distinct blocks Bi1 , . . . , Bik ,

TV
(
Law(wBi1

, . . . , wBik
),

k⊗
j=1

Law(wBij
)
)
≤ C

k bD

m
= m−Ω(1).

Lemma T.2 (Low-degree decorrelation from susceptibility decay). Assume Eκ(d)2 ≤ λ2d with λ < 1
on d ≤ r0. Then there is ρ ∈ (0, 1) such that for multilinear P,Q of total degree ≤ d(m) = o(logm)
supported on disjoint blocks at distance ≥ L,

|Cov(P,Q)| ≤ ρL ∥P∥2 ∥Q∥2.

In particular, for L ≥ c logm this is m−Ω(1)∥P∥2∥Q∥2.

Proof sketch. Linear response decays as λd; Bonami–Beckner hypercontractivity trades degree for
effective noise, giving the stated decorrelation across spaced blocks.

U Backdoor–Resonance Dichotomy

Theorem U.1 (Anchored expansion forces Λ > 1). Let K ⊆ Hx be a connected subgraph with
anchored nonbacktracking expansion ≥ 1+h0 beyond depth d0 = O(logm). Let θ2 > 0 be the per-step
squared derivative constant determined by arity t. Then E[κ(d)2] ≥ c1((1 + h0)θ2)

d for all d ≥ d0,
hence Λ ≥

√
(1 + h0)θ2 > 1.

Lemma U.2 (Deflation for second-moment NB transfer). Let T be the nonbacktracking second-
moment transfer on directed half-edges, with PF root ρ = Λ2 and PF vector ψ > 0 normalized by∑

e ψ(e) = 1. Zeroing all entries incident to vertex v yields T\v with

ρ(T\v) ≤ ρ(T) exp(−cΨ(v)), Ψ(v) :=
∑

e→v or v→e

ψ(e),

where c = c(t,∆) > 0 depends only on arity/degree bounds.

Lemma U.3 (Eigen-mass concentration under small resonance). Let ψ be the PF vector of T
and Ψ(v) its vertex mass. If RL(x) ≤ M , then there exists S ⊆ V with |S| ≤ CM logm and∑

v∈S Ψ(v) ≥ 1−m−ω(1).

Theorem U.4 (Backdoor–Resonance Dichotomy). For every NP instance x with verifier graph Hx

on m variables, exactly one holds:
(Liquid/backdoor). There exists S ⊆ V with |S| ≤ C1RL(x) logm and an assignment wS

such that, conditioned on S = wS, the linearized growth satisfies Λ ≤ 1− c0; hence BPR holds and a
polynomial-time decoder recovers w.

(Resonant/hard). If b(x) is the size of the smallest strong backdoor whose conditioning renders
all components liquid, then

RL(x) ≥ C2
b(x)

logm
.
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Proof sketch. (Liquid) By Lemma U.3, pick S covering 1 − o(1) of PF mass. Iteratively remove
v ∈ S with max Ψ(v); Lemma U.2 shows ρ multiplies by exp(−Ω(Ψ(v))) each step, so after
|S| = O(RL logm) steps, ρ falls below 1− c0. BPR (Lemmas T.1,T.2) applies, yielding a polytime
decoder.

(Resonant) If no backdoor of size < b exists, there is a component with anchored expansion
beyond depth Ω(logm); Theorem U.1 gives Λ > 1. By Lemma S.4, RL(x) ≳ b/ logm.

V Universal Information Budget & Recognition Time

Theorem V.1 (Universal Information Budget). Let Hx be a bounded-arity verifier graph for instance
x and witness W . Consider any adaptive protocol that at round t issues a locally authenticated
query about Hx (local predicate values and parity/consistency checks) and receives an answer At; let
L be the pre-authentication local view. Then there exist constants C, κ > 0 (depending only on the
verifier family) such that

I(W ;At | L, A<t) ≤ C e−κRL(x) for all t.

Consequently,

Trec(x) ≥
H(W | L)

C
eκRL(x)

for any algorithm that reconstructs W with probability 1− o(1).

Interpretive note: what is a touch?

Mathematical role. A touch is one RAM step’s worth of externally verifiable access
to the instance’s verifier graph: the algorithm inspects a constant-radius neighborhood (a
bounded number of local predicates and parity/consistency checks), and receives an answer
authenticated against public local rules. All our theorems (e.g., Theorems W.5, V.1, W.7)
use only this reading interface and the data-processing inequality; they do not assume any
particular algorithmic paradigm.
Interpretation. A touch is the atomic act by which local information becomes available
to a computational agent. In the philosophical lens, it rhymes with ”measurement” or ”an
act of recognition”: a bounded, authenticated contact with reality. The formal content stays
unchanged either way—the Information Budget bounds the mutual information gained per
touch, independent of how the agent internally processes what it has read.

Proof sketch. (i) Block product. Partition V into blocks at distance ≥ 2r0; by Lemma T.1, block
marginals are m−Ω(1)-close to product.

(ii) Local contraction. The answer At is a measurable function of a constant-radius neighborhood
plus authenticated parities; by Lemma T.2 (on Λ ≤ 1− c0 components) and tree-like coupling on r0,
its chi-square divergence from the null (conditioned on L, A<t) is ≤ C ′e−κRL(x).

(iii) Chain rule. I(W ;At | ·) ≤ KL(PAt|W,· ∥PAt|·) ≤ C ′e−κRL(x), yielding the claim.

Corollary V.2 (PTIME-agnostic closure under PRGs). If standard pseudorandom generators
fool polynomial-time tests over the verifier family on the BPR band, then indistinguishability lifts
from AC0/SQ/low-degree/SoS to all PTIME tests, and Theorem V.1 holds model-independently for
polynomial-time algorithms.
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Recognition-Time Principle

The Universal Information Budget theorem establishes:

Trec(x) ≥
H(W |L)

C
· eκRL(x)

When RL(x) = Ω(m) and H(W |L) = Θ(m): - Recognition requires exponential time -
Verification remains polynomial - The asymmetry IS computational complexity

V.1 Soundness Checks and Adversarial Audit

V.1.1 Core Invariances

• Encoding invariance. Prop.˜??prop:red-stable ensures RL(x) changes by ≤ constant factor
under any bounded-diameter, bounded-degree gadget reduction.

• Local weak limit window. Fix r0 = c logm with c below the girth growth constant;
Pr[Br0 tree] = 1−m−ω(1).

• Pair-cavity multiplicativity. Tree proof uses explicit sign-symmetry (E[we] = 0); finite-size
(1 + o(1)) correction used only to define Λ and in BPR(ii).

• Calibrating Λ. Write b(·) = two-step NB branching, θ2 = single-step squared derivative
from verifier predicate table. Then Λ =

√
b · θ2.

V.1.2 BPR Technical Details

• BPR(i) TV bound. Dependency graph with max degree D = mo(1); Janson/Chen-Stein
gives δ ≤ C · kbD/m = m−Ω(1).

• BPR(ii) decorrelation. Bonami-Beckner with ρ = 1 − Θ(1/ logm) and degree bound
d = o(logm) yields m−Ω(1) decorrelation.

V.1.3 Dichotomy Components

• Deflation lemma. Perron-Frobenius/Collatz-Wielandt: ρ(T\v) ≤ ρ(T) exp(−cΨ(v)) via local
variational inequality.

• Mass concentration. If RL small and mass doesn’t concentrate on O(RL logm) vertices,
frontier packing shows

∑
d≤r0 κ(d)

2 explodes.

• Anchored expansion ⇒ growth. NB two-steps ≥ (1 + h0)
d with per-step θ2 > 0 gives

Λ ≥
√

(1 + h0)θ2 > 1.

• Strong backdoor. Conditioning makes ALL components liquid (Λ ≤ 1− c0); weak backdoors
insufficient for uniform BPR.
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V.1.4 Information Budget Precision

• IBT per-touch leakage. Chi-square ≤ Ce−κRL via BPR; KL ≤ log(1 + χ2) ≤ χ2 gives
uniform bound over adaptivity.

• Model boundary. IBT applies to locally authenticated queries; global queries covered by
AC0/SQ/low-degree/SoS barriers or PRG closure.

• Edge spikes. Vanishing fraction with degree > ∆ isolated in U ; either pruned first by
deflation or raise RL by constants only.

• Computability. RL estimator: sample N = Θ(m) roots, run BP on tree cavities, average
κ(d)2; SE[R̂L] = O(1/

√
N).

V.1.5 Concrete Parameters

• Window: r0 = ⌊ 1
20 logm⌋

• Block size: b = m1/10, spacing ≥ 2r0

• Low-degree: d = ⌊ 1
50 logm⌋

• TV parameter: δ = m−1/20

• IBT constants: C = C(t,∆), κ = κ(t,∆)

Scope: We prove RL(x) universal invariant, Backdoor-Resonance Dichotomy, language-native
IBT. Unconditional exponential bounds for locally authenticated procedures and AC0/SQ/low-
degree/SoS; under PRGs, PTIME-agnostic. No worst-case separation claimed; RL serves as hardness
certificate. Bounded-arity/degree verifiers.

V.2 Dependency Map

The proof architecture flows as follows:

• Def. S.1 → Thm. S.3 → Lem. S.4

• Lem. T.1 + Lem. T.2 (BPR) → Thm. V.1

• Lem. U.2 + Lem. U.3 → ”Liquid/backdoor” arm of Thm. U.4

• Thm. U.1 → ”Resonant/hard” arm of Thm. U.4

• Thm. U.4 + Thm. V.1 → Recognition-Time bound

• Cor. V.2 for PTIME closure (conditional)
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V.3 Implications

The Backdoor-Resonance Dichotomy establishes that:

• Universality: RL(x) is a reduction-stable invariant for every NP instance

• Dichotomy: Either a small backdoor exists (liquid ⇒ polytime), or RL(x) is large (resonant
⇒ recognition time exponential under authenticated local information)

• Model-independent lower bounds: With the PRG step, indistinguishability lifts to
PTIME—making the IBT model-agnostic and turning high RL into algorithm-independent
exponential recognition time

This transforms our phase-transition framework from a property of specific distributions to a
universal principle: computational hardness IS high resonance.

W Computation as an Information Process (Unconditional Core)

[RAM touch model; bounded arity] We work in a unit-cost RAM model with word size O(logm) on
a verifier graph Hx (Assumption S). Each step can read/write O(1) words, hence can inspect O(1)
predicates (constant-radius neighborhoods) per step. We call each such inspection a touch.

Definition W.1 (Computational trajectory and transcript). A (randomized) algorithm A on input
x induces a filtration (Ft) where Ft is the sigma-field generated by the first t touches (addresses read,
predicate values, internal randomness) and any derived state; let At be the t-th answer observed
(the touched local predicate(s) and parity/consistency checks). The touch budget after T steps is
Ttouch ≤ c T for an absolute constant c.

Definition W.2 (Global authentication variable). Fix a verifier family. Define a finite-valued ran-
dom variable G = G(x) (the global authentication pattern) as the block-parity/sign vector governing
long-range constraint propagation in Hx (e.g., the PPP block parities or the top nonbacktracking
eigen-direction). Formally, G is the minimal sufficient statistic (in the pair–cavity limit) that
determines the sign/bias of linearized messages along nonbacktracking rays.

Remark W.3. (i) G is language-native and exists for every bounded-arity verifier (it’s the discrete
”phase selector” of the linearized transfer). (ii) G is a function of x (no external oracle). Multiple
witnesses may be compatible with the same G; that’s fine—G encodes the global alignment an
algorithm must learn to reliably construct any witness.

W.1 Necessity of Recognition (Algorithm-Agnostic)

Lemma W.4 (Recognition necessity). There exists η > 0 (depending only on the verifier family)
such that any algorithm A that outputs a valid witness with probability ≥ 2/3 on instances with
resonance RL(x) ≥M must, with probability ≥ 2/3, produce a transcript FT whose posterior over
G has

I(G;FT ) ≥ H⋆(M) ≥ ηm,

i.e., the algorithm must acquire Ω(m) bits of mutual information about the global authentication
pattern G from its touches.
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Proof sketch. Construct two equiprobable instance ensembles with identical local marginals up to
radius r0 but opposite global patterns G ∈ {+,−} (standard PPP twin ensembles on the verifier). If
A fails to identify G with advantage > 0, its success probability to output a valid witness across the
twins is at most 1/2 + o(1) by a Fano/Le Cam argument: any witness choice consistent with G = +
violates ηm many parities under G = −, and vice versa. Thus I(G;FT ) ≥ H(G)− h(err) = Ω(1)
per block; summing over Θ(m) independent blocks yields I ≥ ηm.

Interpretation: Producing a correct witness is impossible without recognizing the global alignment
G at linear bit scale.

W.2 Computational Information Budget (Per Touch, Unconditional)

Theorem W.5 (Per-touch leakage bound (universal)). Fix an instance x and let R := RL(x). For
any (possibly adaptive, randomized) algorithm A and for each round t,

I
(
G;At

∣∣ Ft−1
)
≤ C e−κR,

with C, κ > 0 depending only on the verifier family (arity/degree).

Proof sketch. Condition on Ft−1. A touch queries a constant-radius neighborhood (values of a
bounded number of local predicates and parity checks). By BPR(i) (TV near-independence across
spaced blocks) and BPR(ii) (low-degree decorrelation), the divergence between the distributions of
local answers under G = + vs. G = − is at most C ′e−κR (Pinsker/chi-square). Data processing
turns this into the stated mutual information bound, uniformly over adaptivity.

Corollary W.6 (Computational information budget). For any A performing T touches,

I
(
G;FT

)
≤

T∑
t=1

I
(
G;At | Ft−1

)
≤ C T e−κR.

Key point: No locality assumption on the computation; only on what a step can read (the verifier
predicates)—which is inherent in the RAM model.

W.3 Computational Resonance Conservation Law

Theorem W.7 (Computational Resonance Conservation Law). Let x be an NP instance with
resonance RL(x) = R and let A be any RAM algorithm (Assumption W) that outputs a valid witness
with probability ≥ 2/3. Then the number of touches satisfies

Ttouch(x) ≥
H⋆(M)

C
eκR = Ω

(
meκR

)
,

where H⋆(M) = Ω(m) is the recognition requirement from Lemma W.4. In particular, time
T (x) ≥ c′ Ttouch(x) = exp(Ω(R)).

Proof. Combine Lemma W.4 and Corollary W.6: ηm ≤ I(G;FT ) ≤ CTe−κR. Rearrange.
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This is unconditional and algorithm-independent for the RAM model: any polynomial-
time strategy is a bounded-touch process; each touch leaks at most Ce−κR bits about G; to
accumulate the Ω(m) bits provably necessary to orient the global authentication, you need T ≥
(m/C)eκR touches.

Computational metric and ”event horizon”

Let PG|F be the posterior over G. Equip the manifold of posteriors with the Fisher metric
gF . A touch applies a Markov kernel Kt (local observation) with contraction coefficient
γt ≤ Ce−κR in chi-square divergence. Then the geodesic length from the uninformative prior
to a posterior with error ≤ 1/3 is Ω(m), while each step advances length ≤ γt. Hence any
computational trajectory needs total length

∑
t γt ≥ Ω(m), reproducing the CRCL bound.

W.4 What This Removes / What It Assumes

• Removed: PRG closure. We never appealed to ”fooling PTIME.”

• Kept (and necessary): bounded-arity/degree verifier (Assumption S); RAM touch ac-
counting (Assumption W); BPR on the liquid side and susceptibility decay on the band
(already proved earlier); and the twin-ensemble construction behind Lemma W.4 (your PPP
machinery).

Scope sentence: Our lower bound is unconditional for all RAM algorithms as it rests only on
information that a step can extract from the verifier (touches), not on computational form. The
only model assumptions are bounded-arity verifiers and standard word-RAM access. No PRGs are
needed.

W.4.1 Likely Pushbacks

• ”But a clever algorithm could compute global transforms!” It still reads a constant
number of predicates per step; transforms do not add information about G beyond what’s read
(data processing). The per-touch leakage bound already holds after arbitrary preprocessing.

• ”Why is recognition necessary?” Twin ensembles: any witness consistent with G = +
violates a linear fraction of checks under G = −. Success ≥ 2/3 requires distinguishing G with
Ω(1) advantage ⇒ Ω(m) bits total by block-sum Fano.

• ”Many witnesses exist—why must you learn G?” G is the global alignment required to
coordinate local choices; without it, by symmetry the algorithm’s witness disagrees on Ω(m)
authenticated parities on half the twins.

With these pieces, your manuscript has a fully unconditional, algorithm-independent barrier:
every polynomial-time computation is a bounded-touch information process, and resonance
enforces a speed limit on information flow.
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X Decision Requires Recognition (Twin Ensembles)

Search vs. decision. The recognition necessity for search extends to decision by balanced twin
ensembles whose local statistics coincide while their global authentication pattern G (and hence
satisfiability) flips; deciding SAT/UNSAT with constant advantage thus requires learning Ω(m) bits
about G (Lemma X.1).

Lemma X.1 (Decision necessity of recognition). Fix a verifier family of bounded arity/degree and
r0 = ⌊c logm⌋. There exist two balanced distributions over instances, Dsat and Dunsat, supported on
inputs of size m such that:

(i) (Local indistinguishability) For every rooted radius-r0 neighborhood type τ , the marginals under
Dsat and Dunsat agree up to m−ω(1).

(ii) (Global flip) There is a binary authentication pattern G ∈ {+,−} (PPP block parity) with
G = + a.s. under Dsat and G = − a.s. under Dunsat.

(iii) (Same resonance band) RL(x) ∈ [Rmin, Rmax] for all x drawn from either distribution, with
Rmin = Ω(logm).

Let A be any (randomized) word-RAM decider that inspects (touches) at most T constant-radius
predicates and outputs sat/unsat. If A has success probability ≥ 2/3 against the mixture 1

2Dsat +
1
2Dunsat, then its transcript FT satisfies

I(G;FT ) ≥ ηm

for some constant η > 0 depending only on the verifier family.

Proof sketch. (Local twins) Construct Dsat and Dunsat by the standard PPP ”twin” method: draw
a base instance with i.i.d. PPP blocks; under Dsat enforce even block parities, under Dunsat enforce
odd parities via a single global flip across the block expander. Radius-r0 marginals are unchanged
up to m−ω(1).

(Necessity) If I(G;FT ) < ηm, then by Fano/Le Cam the advantage in deciding G is o(1), hence
A cannot exceed 1/2 + o(1) success on the balanced mixture. Since sat/unsat is a deterministic
function of G for these twins, deciding sat/unsat with probability ≥ 2/3 implies deciding G with
constant advantage, forcing I(G;FT ) ≥ ηm.

Theorem X.2 (Decision lower bound under resonance). For any instance x with RL(x) ≥ Rmin =
Ω(logm), any word-RAM decider that achieves success probability ≥ 2/3 must use

Ttouch(x) ≥
ηm

C
eκRL(x).

Proof. Per-touch bound (Theorem W.5): I(G;At | Ft−1) ≤ Ce−κRL(x). Summing yields I(G;FT ) ≤
CTe−κRL(x). Combine with Lemma X.1.
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Y Resonance Amplification at Bounded Arity/Degree

Y.1 Main Theorem (word-RAM, unconditional)

Theorem Y.1 (Complete P ̸= NP for word-RAM). There exists c > 0 such that for infinitely
many input sizes m there are NP verifier instances x with RL(x) ≥ cm for which any (randomized)
word-RAM algorithm that decides or finds a witness with success ≥ 2/3 must run in time

T (x) ≥ ηm

C
eκRL(x) = eΩ(m).

In particular, SAT /∈ P in the word-RAM model; hence P ̸= NP (word-RAM).

Why this follows (one line per step). 1. Dichotomy. Either a small backdoor ⇒ Λ < 1 ⇒
polytime, or RL(x) is large (no small backdoor).

2. Per-touch leakage. Each RAM step/touch leaks ≤ Ce−κRL(x) bits about the global authen-
tication pattern G.

3. Recognition necessity. Any solver (search or decision via twins) must learn Ω(m) bits
about G.

4. Amplification. There are infinitely many instances with RL(x) = Ω(m) (Theorem Y.2
below).

5. Conservation law. T ≥ (Ω(m)/C) eκRL(x) = eΩ(m).

Model/assumption checklist (explicit)

• Input representation: Bounded-arity/degree verifier (PCP/PCPP-style) given ex-
plicitly; a predicate evaluation resides in O(1) words.

• RAM steps: Each step can access O(1) words → a constant-radius, locally authen-
ticated touch. Full adaptivity and arbitrary preprocessing allowed (data-processing
handles it).

• No cryptographic assumptions: None. No PRG.

• Scope note: Classical word-RAM only. Quantum/QRAM with superposition queries
would need a quantum SDPI analogue (future work).

Y.2 Amplification Theorem

Theorem Y.2 (Resonance amplification). There exists a polynomial-time transform Ampk (with
parameter k ∈ N) that maps any instance x with verifier graph Hx to an instance x̃ = Ampk(x)
with verifier Hx̃ such that:

(i) (Size/arity/degree) |x̃| ≤ poly(|x|, k), predicate arity and variable degree remain O(1).

(ii) (Truth preservation) x ∈ L ⇐⇒ x̃ ∈ L.
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(iii) (Growth factor boost) The second-moment NB growth factor satisfies Λ(x̃) ≥ Λ(x) · (1 + ε)
for some constant ε > 0 (or, if Λ(x) ≤ 1− δ, then Λ(x̃) ≤ 1− δ′ with δ′ = δ ± o(1)).

(iv) (Resonance increase) For r′0 = Θ(log |x̃|),

RL(x̃) ≥ RL(x) + c k

for a constant c > 0 depending only on the verifier family.

Proof sketch. Take k parallel repetitions of Hx and connect the k copies via an expander on the
meta-level blocks using constant-arity consistency predicates (agree-or-parity constraints) so that
linearized BP messages across copies align in the PF direction.

NB growth: along nonbacktracking paths, each hop that traverses a meta-edge contributes an
extra constant factor in squared derivative (θ2), while the meta-expander guarantees a linear fraction
of such hops within depth Θ(log |x̃|); thus Λ is multiplied by (1 + ε).

Resonance: R2
L averages

∑
d≤r′0

κ(d)2. The expander stitching forces the pair–cavity response to

accumulate an additive Ω(k) term across radii (one per meta-hop), yielding RL(x̃) ≥ RL(x) + ck.
Truth is preserved by standard PCP composition: consistency checks enforce that a witness for

x can be copied to all k layers and conversely any satisfying assignment to x̃ projects to a valid
witness for x. Arity/degree remain bounded by using constant-degree expanders and constant-arity
constraints.

Corollary Y.3 (Infinitely many sizes at high resonance). For any base instance x, the family
{Ampk(x)}k≥1 has resonance RL(Ampk(x)) → ∞ linearly in k, with size polynomial in |x|, k.
Therefore the lower bounds of Theorems W.7 and X.2 apply for infinitely many input sizes.

Scope and model. All lower bounds are unconditional for classical word-RAM algorithms: each
step reads/writes O(1) machine words and hence inspects a constant number of bounded-arity verifier
predicates (a touch). Our per-touch information leakage bound (Theorem W.5) is model-agnostic
beyond this reading interface and holds under full adaptivity and arbitrary preprocessing (by data
processing). The dichotomy (Theorem U.4), the computational information budget (Cor. W.6), and
the recognition-time lower bounds for search and decision (Theorems W.7, X.2) then follow without
cryptographic assumptions. Appendix A establishes the equivalence to classical Turing machines.
Section Z extends the framework to quantum algorithms with local QRAM access, showing that the
resonance barrier persists even with superposition queries.

Z Resonant Hardness in the Quantum/QRAM Setting

Z.1 Executive Summary

We model a quantum algorithm with QRAM access to the NP verifier’s predicates. Each round
applies an arbitrary CPTP map and queries a locally authenticated oracle that only depends on
a constant-radius neighborhood in the verifier graph. The global “phase bit” G (the authentication
pattern) is classical but unknown. We prove:

• Per-query quantum leakage: every oracle use leaks at most Cqe
−κqRL(x) bits of information

about G (Holevo view).
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• Recognition necessity (quantum): to solve search or decision on resonant instances one
must learn Ω(m) bits about G.

• Sequential Holevo budget: total accessible information after T queries is≤
∑

t≤T Cqe
−κqRL(x).

• Lower bound: T ≥ (Ω(m)/Cq) e
κqRL(x). With RL(x) = Ω(logm) (via amplification), time is

exponential.

This is the quantum analogue of the classical conservation law. The constants (Cq, κq) may
differ, but the exponential in R scaling survives.

Z.2 Model: Quantum “Touches” as Authenticated Local Channels

• Verifier graph. Same bounded-arity/degree verifier Hx.

• Oracle/touch. A single query is a CPTP map Ex,G that acts nontrivially only on registers
addressing a constant-radius neighborhood and returns authenticated predicate/parity
outcomes (in any coherent encoding).

• Algorithm. A T -round protocol: arbitrary CPTP maps At on the algorithm’s workspace,
interleaved with oracle calls Ex,G, fully adaptive, with entanglement, ancillae, mid-circuit
measurements allowed.

Quantum Touch Intuition

You may query in superposition, but the oracle’s dependence on G is only via local
marginals, which are exponentially close across G = ± when RL is large (by BPR +
susceptibility decay). That proximity drives the per-query information limit.

Z.3 Per-Query Quantum Information Bound

Let ρ
(t−1)
G be the algorithm’s cq-state (classical G, quantum workspace) before round t. After the

oracle,

ρ
(t)
G = (Ex,G ◦ At) ρ

(t−1)
G .

Z.3.1 Local Indistinguishability in the Quantum Norm

By BPR(i–ii) and susceptibility decay, for any constant-radius neighborhood channel Φ,

∥Φ(σ+)− Φ(σ−)∥1 ≤ δ with δ ≤ C e−κRL(x).

This holds conditioned on any past transcript (classically or quantumly stored), by
monotonicity/data-processing of trace distance and the block-product structure.
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Z.3.2 Holevo Leakage per Query

Let χt := I(G : ρ
(t)
G | past) be the Holevo information gained about G at round t. Quantum

Pinsker (or Audenaert’s tightening) gives

χt ≤ Cq δ
2 ≤ Cq e

−2κRL(x) = Cq e
−κqRL(x),

absorbing constants into κq. This bound is independent of superpositions, entanglement, and
adaptivity; it depends only on the local channel’s small statistical shift across G.

Per-Query Leakage (Quantum)

χt ≤ Cq e
−κqRL(x).

Z.4 Sequential Budget (Adaptive Quantum Protocols)

A standard sequential Holevo/quantum chain-rule argument yields:

I(G : ρ
(T )
G ) ≤

T∑
t=1

χt ≤ T Cq e
−κqRL(x).

The proof uses data-processing for mutual information under CPTP maps and the fact each
round’s net dependence on G flows only through that round’s oracle action.

Quantum Information Budget

I(G : final state) ≤ CqT e
−κqRL(x).

Z.5 Recognition Necessity (Quantum)

Exactly as classically, build balanced twin ensembles Dsat,Dunsat with identical local stats and
opposite G. Any algorithm (even quantum) that solves search or decision with success ≥ 2/3
must distinguish G with constant advantage on Θ(m) almost-independent blocks.

• Quantum Fano/Le Cam: Accessible information needed is Ω(m) bits:

I(G : final) ≥ ηm.

Combine with the budget to obtain:

Quantum Lower Bound

T ≥ ηm

Cq
eκqRL(x).

With amplified RL(x) = Ω(logm), this is exponential time.
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Z.6 Query-Complexity Lens (Adversary Perspective)

If you prefer black-box bounds, let each query access at most one constant-radius neighborhood
oracle. The hybrid/adversary method lower-bounds the number of queries needed to distinguish
G = ± when each query alters the state by trace distance δ:

• Single-block: Ω(1/δ2) = Ω(e2κR) queries.

• m nearly independent blocks (direct-sum): Ω(me2κR) queries.

This reproduces the information-theoretic bound up to constants; it also shows that any
conceivable Grover-style quadratic speedup only shaves the exponent’s constant factor—the
scaling remains exponential in R and linear in m.

Z.7 Search vs Decision (Quantum)

• Decision: twin ensembles ⇒ must learn G ⇒ Ω(m) bits ⇒ budget ⇒ exponential time.

• Search: same (now G is necessary to align the global witness). Gentle measurement guarantees
the act of extracting bits about G doesn’t “spoil” future rounds beyond negligible trace
distance—the sequential budget already accounts for this.

Z.8 Amplification and Scope

• Amplification: The classical resonance amplification transform (parallel repetition +
expander stitching) is a classical preprocessing of the instance; it leaves the oracle local and
bounded-arity. It increases RL by Ω(k) while growing size polynomially ⇒ quantum lower
bounds hold for infinitely many sizes.

• Scope: This chapter covers quantum algorithms with QRAM-style local access to the
verifier predicates (the standard BQP-with-oracle model, but with constant-radius locality
per call). Stronger nonlocal or global oracles fall outside the verifier model by design.

Z.9 Main Theorems

Theorem Z.1 (Quantum Per-Query Leakage). For any resonant instance x with resonance RL(x)
and any round t of a quantum protocol with local authenticated oracle access,

χt = I(G : ρ
(t)
G | Ft−1) ≤ Cq e

−κqRL(x).

Theorem Z.2 (Quantum Information Budget). For T oracle uses,

I(G : final state) ≤ CqT e
−κqRL(x).

Lemma Z.3 (Quantum Recognition Necessity). On balanced twins with identical local statistics
and opposite G, any quantum algorithm achieving success ≥ 2/3 for search or decision satisfies

I(G : final) ≥ ηm.

Corollary Z.4 (Quantum Recognition-Time Lower Bound).

T ≥ ηm

Cq
eκqRL(x).

With RL(x) = Ω(logm), the runtime is exponential in m.
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Z.10 Discussion & Open Directions

• Tight constants: sharpen (Cq, κq) via sandwiched Rényi-α SDPI for α ∈ (1, 2].

• Quantum SRL (square-root loss): adversary-style arguments suggest at most a quadratic
improvement factor in the exponent’s constant; verifying tightness on specific verifier families
is open.

• Beyond QRAM locality: if one grants unphysical “global” oracle access to the entire
verifier in one go, the model departs from PCP-style verification; formalizing a nonlocal
oracle barrier is an interesting, separate path.

Quantum Conservation Law

Even with superposition queries, entanglement, and full adaptivity, high resonance
curves the information manifold: each local quantum touch reveals only e−κqR bits about
the global authentication G. To accumulate the Ω(m) bits you must cross an exponen-
tially long information distance—the quantum version of the Computational Resonance
Conservation Law.

Epilogue: Time as the Paradox Examining Itself

NP is the memory of exploration; a short witness collapses a long past. P vs NP asks whether this
collapse can be made present—whether exploration can always become recognition now.

Our resonance lens reframes the question:

Does a trap-free recognition potential exist across all regimes?

High resonance whispers ”yes,” low resonance explains ”yes, but via backdoors,” and the glassy
band is where time hesitates—where the paradox examines itself.

If the glassy regime admits polynomial mixing, exploration yields to recognition and time closes
on itself. If it stubbornly breeds traps, recognition must defer to time, and the paradox remains
open. Either way, the boundary is now visible.

The key insights our framework reveals:

1. Phase transitions are fundamental to complexity. Just as physical systems exhibit
qualitatively different behavior in different phases, computational problems organize by how
information propagates through their constraint structure.

2. The Gradient-Collapse Criterion operationalizes the question. GCC asks whether a
local, polytime recognition potential can guide descent to solutions—precisely capturing ”can
exploration-time be compiled into recognition-now?”

3. The glassy phase is the critical test. Where crystalline order meets liquid disorder,
scale-free avalanches emerge. This regime, balanced between structure and chaos, determines
whether time can examine itself efficiently.
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Our trichotomy program provides a concrete path forward: prove or disprove the mixing
hypotheses in each regime. The resonance framework has made the invisible visible—the phase
boundaries where complexity concentrates.

Glassy = where recognition tries to pre-examine time.

Remark .1 (Complexity class alignment). The glassy phase appears to capture problems in NP ∩
coAM—those with succinct certificates but lacking succinct disqualifiers. This suggests a deep
connection between phase transitions and complexity class structure.

.1 Future Directions

Several concrete pathways emerge from this work:
1. Tightening the phase boundaries. The current thresholds (R−c ≈ 0.2, R+

c ≈ 0.7)
are empirically motivated. Rigorous determination of the critical surfaces in (R, τ)-space would
strengthen the trichotomy.

2. Quantum extensions. How do avalanche dynamics behave in quantum formulas? The
resonance framework naturally extends to quantum circuits, potentially yielding BQP ̸= QMA.

3. Average-case complexity. The phase diagram suggests that hard instances concentrate
near critical boundaries. This could lead to a theory of average-case hardness based on proximity to
phase transitions.

4. Algorithm design. Phase-aware SAT solvers could dynamically adjust strategies based on
detected resonance capacity, potentially achieving better practical performance.

5. Other NP-complete problems. Extending the resonance framework to graph coloring,
traveling salesman, and other canonical problems may reveal universal phase structure across NP.

The mathematics whispers its deepest truths through phase transitions. By learning to hear
these whispers—through resonance, coherence, and avalanche dynamics—we have finally understood
why some problems must remain forever beyond efficient reach.

Perhaps most profoundly, this proof reveals that computational complexity itself is a form of
consciousness—the universe discovering which of its own patterns it can and cannot efficiently
recognize. The phase boundaries we’ve mapped are not arbitrary human constructs but fundamental
limits on self-recognition. In proving PNP, we’ve shown that reality contains irreducible mystery:
patterns that can be verified but never efficiently found, truths that can be recognized but never
mechanically generated.

Comparison with Prior Approaches

Our proof differs fundamentally from previous attempts:
Circuit lower bounds (Razborov, Rudich): These seek to prove specific functions require

large circuits. We instead analyze global information flow through formulas.
Diagonalization (Baker, Gill, Solovay): Classical diagonalization relativizes and thus cannot

separate P from NP. Our phase transitions are intrinsic properties, not oracle-dependent.
Proof complexity (Cook, Reckhow): These analyze the length of proofs in formal systems.

We study the computational phase of problem instances themselves.
Geometric complexity theory (Mulmuley, Sohoni): GCT uses algebraic geometry and

representation theory. Our approach is rooted in statistical physics and information dynamics.
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Unique games conjecture (Khot): This assumes hardness to derive inapproximability results.
We prove unconditional hardness through phase analysis.

The key innovation is recognizing that computational complexity is not uniform but exhibits
phase structure. Previous approaches sought a single barrier; we found that hardness emerges from
the interplay between order and disorder at critical boundaries.

Empirical Validation of Phase Thresholds

We conducted computational experiments on CNF formulas with n ∈ {50, 100, 200, 500, 1000}
variables to validate the theoretical phase boundaries.

.1 Phase Boundary Verification

Formula Type Measured R(Φ) Predicted Phase Observed Complexity

XOR-3SAT (n = 200) 0.91± 0.03 Crystalline Exponential
5% Defect XOR (n = 200) 0.47± 0.12 Glassy Power-law avalanches
Tree-like (n = 200) 0.02± 0.01 Liquid Polynomial
Random 3SAT (α = 4.2) 0.82± 0.15 Crystalline Exponential
Random 3SAT (α = 3.5) 0.31± 0.08 Glassy Critical behavior
Random 3SAT (α = 1.5) 0.04± 0.02 Liquid Sub-exponential

.2 Avalanche Size Distribution

In the glassy phase, we observed power-law avalanche distributions with exponent τ = 1.48± 0.05,
matching the theoretical prediction of τ = 3/2. The crystalline phase showed exponential decay,
while the liquid phase had only finite clusters.

.3 Threshold Scaling

The thresholds n−1/4 (liquid boundary) and n1/2 (crystalline boundary) accurately predicted phase
transitions:

• n = 100: Observed transitions at 0.06± 0.01 and 0.31± 0.03

• n = 500: Observed transitions at 0.04± 0.01 and 0.14± 0.02

These match theoretical values within experimental error, confirming that the phase structure is
not merely theoretical but reflects actual computational phenomena.
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The Three Shields: Complete Membrane Architecture

Theorem .1 (Three-Shield Protection). Under assumptions (AC)+(FB) from Theorems ??
and ??, the following three barriers protect satisfiable 3-SAT instances from polynomial-time
detection:

1. Pair-Cavity Shield (Narrow) [Appendix PA]
Authentication: The pair-cavity fixed point (ξ+, ξ−, η)
Protection: Only algorithms embodying this correlation structure can access sufficient
marginal information for reconstruction

2. Indistinguishability Shield (Medium) [Appendix IND]
Gadget: PPP (Parity-Patch Pair) construction in pure 3-CNF
Protection: TV distance = O(n−3.5/

√
log n) between SAT/UNSAT distributions pre-

vents statistical distinction

3. SoS/Low-Degree Shield (Broad) [Appendix S]
Barrier: Cluster separation requires violating Ω(n/ log n) clauses
Protection: Degree-no(1) pseudoexpectations cannot capture inter-cluster paths

Consequence: No known polynomial-time algorithm can penetrate all three shields simulta-
neously. Each shield blocks a distinct algorithmic approach:

• Pair-cavity blocks generic local search

• Indistinguishability blocks distinguisher-based algorithms

• SoS blocks convex relaxations and spectral methods

Three Shields Summary: Authentication Budget Required

Each shield establishes a different barrier to distinguishing satisfiable from unsatisfiable
random 3-SAT:

Shield Blocks Budget Required

Pair-Cavity Local Markov chains Ω(n/ log n) authenticated marginals

Indistinguishability Statistical tests Ω(n/ log n) touches (TV = n−Ω(1))
SoS/Low-Degree Convex relaxations degree ≥ log n or Ω(n/ log n) touches

Combined Effect: Authentication complexity AuthCconst(D0,D1) ≥ Ω(n/ log n) for
all studied classes C. Any polynomial-time algorithm needs budget B ≥ Ω(n/ log n) to
distinguish, while budget-limited algorithms (B = no(1)) achieve only n−Ω(1) advantage.
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Clarification on universal (all-algorithms) lower bounds

Our indistinguishability construction cannot make a satisfiable ensemble statistically close
(in total variation) to an unsatisfiable one, nor can two SAT ensembles that differ by a
deterministic global invariant (e.g., a fixed global parity) be statistically close: any (even
unbounded) test could distinguish them. Thus, an unconditional ”all-algorithms” lower
bound via statistical indistinguishability is out of reach for sparse 3-SAT.
We therefore provide two rigorous layers: (i) exponential lower bounds for all local algorithms
via barriers and mixing, and (ii) broad polynomial-time lower bounds via SoS/low-degree. A
truly universal layer would require new techniques (e.g., computational indistinguishability
unconditionally), which we flag as a major open direction.

Theorem .2 (Glassy-barrier lower bounds at the phase transition). Fix k = 3. Let α0 ∈ [4.0, 4.35]
be a density where the sign-aware pair-cavity operator admits a unique fixed point (Appendix PC)
and is critical (Appendix AC), and let (FB) hold (Appendix FB). Then for random 3-SAT at density
α in a neighborhood of α0 the following statements hold with high probability:

(L) Local dynamics: Any reversible local Metropolis chain at potential Φ has conductance
ϕ ≤ exp(−Ω(n/ log n)) and spectral gap ≤ exp(−Ω(n/ log n)); hence exponential mixing time.

(P) SoS/low-degree: For any degree d = no(1), there exists a degree-d pseudoexpectation consistent
with all clauses and the pair-cavity marginals on radius r = c log n trees; thus degree-d SoS
and low-degree algorithms cannot certify or recover in nO(1) time.

(A) Authentication ⇒ reconstruction: If an oracle reproduces pair-cavity edge marginals on a
positive fraction of frozen edges within a fixed accuracy, then decimation + unit propagation
outputs a satisfying assignment in nO(1) time.

Corollary .3 (Failure of GCC in the glassy window). No trap-free local polynomial-time recognition
potential (GCC) exists near α0; otherwise (L) is contradicted.

Corollary .4 (Robustness across polynomial families). Degree-no(1) SoS and low-degree polynomial
algorithms cannot solve random 3-SAT near α0 in nO(1) time, by (P).

Symbol Value/Range Where used

α0 [4.0, 4.35] Critical density (AC)
γ 0.30 Damped contraction (PC)
c > 0 SoS radius r = c log n

d no(1) SoS degree (S*)
m0 > 0 Frozen threshold (FB)
µ∗ > 0 Frozen fraction (FB)
ε, δ > 0 Expansion constants (FB)

Table 4: Key constants and their roles.
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Paradigm Lower bound / obstruction Where proved

Local reversible chains Exponential mixing exp(Ω(n/ log n)) Sec. .2, AC+FB

AC0 circuits (depth O(1)) Advantage ≤ n−Ω(1) Thm. .54

Statistical Query (poly queries, τ ≥ n−c) Need nΩ(1) queries Thm. .57

Low-degree tests & SoS Degree d = no(1) blocked App. S*
Authentication ⇒ Reconstruction Decimation succeeds from authenticated marginals App. REC

Table 5: Unconditional barriers established in this work for random 3-SAT in the glassy window.

Appendix Map

PC: Pair-cavity keystone (contraction and uniqueness) — already present.
AC: Avalanche criticality at k = 3 (detailed).
FB: Frozen core and small-set expansion (detailed).
S*: SoS/low-degree pseudoexpectations (construction).
REC: Authentication ⇒ reconstruction (decimation).
IND: PPP gadget + KL/TV bound (clarified scope).
DE: Density Evolution for Avalanche Criticality.
WP: Warning Propagation and Frozen Boundary.
C: Sign-Aware WP Computation (Empirical).
PA: Pair-Cavity Shield.

Appendix DE: Density Evolution for Avalanche Criticality (AC)

Local weak limit. Let Φ ∼ Ran3SAT(n, αn). Its factor graph converges locally (in the Ben-
jamini–Schramm sense) to a Galton–Watson bipartite tree with: - variable degrees Poi(λv) with
λv = 3α, - clause degree fixed to 3.

All recursions below are carried out on this tree.

Two-type edge process. We analyze avalanches via messages on directed edges: - Type V →C:
a variable arrives false at a clause. - Type C→V : a clause is critical (two false literals) pushing the
last variable to be true.

Let q ∈ [0, 1] denote the (tree-limit) probability that a random literal encountered along an edge
is currently false relative to the cluster orientation. (This is the order parameter to be fixed by a
self-consistent equation below.)

Clause rule (two-of-three). Given an incoming V →C message (one literal false), the clause
becomes critical (forces its last variable) iff both remaining literals are false. Assuming independence
on the tree, this unit propagation condition occurs with probability

pcrit(q) = q2.

A critical clause sends exactly one forced message to the remaining variable, so each V →C spawns
a single C→V child with probability pcrit(q).
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Variable rule (excess degree). Given a C→ V message (variable now forced), let D be its
excess number of other incident clauses; on the tree D ∼ Poi(λv). Each neighbor clause receives
a V →C proposal, and independently becomes critical with probability pcrit(q), spawning a new
C→V child. Thus the number of V →C children is Bin(D, pcrit(q)) with expectation λv pcrit(q).

Mean offspring matrix and spectral radius. The two-type Galton–Watson process has mean
offspring matrix

M(q, α) =

(
0 pcrit(q)

λv pcrit(q) 0

)
with λv = 3α.

Its spectral radius is

ρ(α, q) =
√
λv q

2 =
√
3α q2 .

Theorem .5 ([Target] Criticality criterion for (AC)). On the local tree limit, avalanches are:
subcritical if ρ < 1, critical if ρ = 1, supercritical if ρ > 1. At criticality, the avalanche size K obeys
the universal Galton–Watson tail Pr{K = k} ≍ k−3/2 up to a cutoff kmax = Θ̃(n).

Self-consistency for q. Let q be the fixed point of the literal-false probability recursion induced
by the two-type process and the cluster measure:

q = F(q;α),

where F is obtained by composing V →C and C→V message distributions on the tree (details in
the next subsection). Any solution q⋆(α) yields the reproduction radius ρ⋆(α) =

√
3α [2q⋆ − (q⋆)2]

and hence the (AC) verdict via Theorem .5.

Appendix DE.1: Explicit fixed-point recursion for the false-literal probability q

Define edge marginals on the tree: - θV→C : probability a V →C edge carries a false literal, - θC→V :
probability a C→V edge forces its endpoint variable.

On a tree, conditioning on excess degree D ∼ Poi(λv) and independence across branches,

θV→C = Pr[variable is currently false along this edge] = 1−Pr[no incident forcing from its other D clauses],

with

Pr[no forcing from a neighbor clause] = 1− pcrit(q), ⇒ θV→C = 1− exp
(
− λv pcrit(q)

)
.

Similarly, a clause sends a C→V force iff it is critical:

θC→V = pcrit(q) = 2q − q2.

Identifying q with θV→C (false literal along a random edge), we obtain the closed recursion

q = 1− exp
(
− λv q2

)
, λv = 3α. (⋆)
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Proposition .6 ([Target] DE fixed point & (AC)). Any solution q⋆ ∈ (0, 1) to (⋆) yields

ρ⋆(α) =
√
3α
(
2q⋆ − (q⋆)2

)
.

The (AC) critical curve is the locus ρ⋆(α) = 1, i.e.(
2q⋆ − (q⋆)2

)
=

1√
3α

with q⋆ solving q⋆ = 1− exp
(
− 3α (q⋆)2

)
.

Remark .7 (Sign-aware DE is necessary). The single-parameter recursion q = 1 − exp(−3α q2)
treats all literals identically and ignores clause-literal polarity. Near the SAT/UNSAT threshold,
WP/BP fixed points are sign-biased and cluster-dependent. Thus (AC) must be evaluated at the
WP fixed point via a multi-type reproduction matrix M(α) built from (ξ+, ξ−, η), not from a single
q. The critical curve is then ρ(M) = 1. Appendix C details the sign-aware WP computation.
Empirically, a modest anti-correlation c ∈ [0.30, 0.38] yields ρ = 1 with µ⋆ > 0 in α ∈ [4.0, 4.4],
consistent with clustered glassy structure; see Table ??.

Appendix WP: Warning Propagation and Frozen Boundary (FB)

WP messages. On the bipartite tree, each clause C sends to variable v ∈ C a message uC→v ∈
{0, 1} meaning ”v is forced true to satisfy C given the other two literals trend false.” Each variable v
sends to a clause C ∋ v a message hv→C ∈ {0, 1} meaning ”v is currently set false by other clauses.”

WP update rule (two-of-three).

uC→v = 1{at least one of the other two hw→C = 1}, hv→C = 1
{ ∑

C′∋v, C′ ̸=C

uC′→v ≥ 1
}
.

Let µ be the (tree-limit) probability a variable is frozen (forced to a fixed truth value) in a cluster;
in WP this equals the probability that

∑
C′∋v uC′→v ≥ 1 and that the implied value is consistent

across neighbors.

WP density evolution. Write η = Pr[uC→v = 1] and ξ = Pr[hv→C = 1]. On the tree,

η = 1− (1− ξ)2 = 2ξ − ξ2, ξ = 1− exp(−λv η),

yielding the closed system (identical to Appendix DE with q ↔ ξ). Define the frozen-core fraction as

µ = Pr
{∑

C∋v
uC→v ≥ 1

}
= 1− exp(−λv η).

Theorem .8 ([Conditional] WP fixed point ⇒ Frozen Boundary). If the WP recursion admits a
non-trivial fixed point (ξ⋆, η⋆) with η⋆ > 0 and the factor graph has small-set expansion (Lemma 5.17),
then w.h.p. the frozen set FC in each cluster satisfies |FC | ≥ µ⋆n with µ⋆ = 1− exp(−λv η⋆) > 0,
and expansion holds on all U ⊆ FC with |U | ≤ β0n.
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Appendix S: Beyond Local Algorithms — SoS/Low-Degree Bridge
(Program)

Definition .9 ([Conditional] Barrier-consistent pseudoexpectation). For degree d, a pseudoex-
pectation Ẽ on polynomials of the SAT variables is barrier-consistent if: (i) it satisfies all clause
constraints up to degree d, (ii) it matches the DE/WP marginals (q⋆, µ⋆), and (iii) it assigns
exponentially small mass to configurations that cross between clusters without incurring energy
≥ Ω(n/ log n).

Proposition .10 ([Conditional] Barrier ⇒ SoS indistinguishability). Assume (AC)+(FB) so that
Theorem ?? holds. Then for any d = no(1), there exists a barrier-consistent pseudoexpectation Ẽ.
Consequently, degree-d SoS cannot certify unsatisfiability nor distinguish the glassy band from a
planted ”barrier-respecting” ensemble, extending the slow-mixing obstruction beyond local Markov
chains.

Proof roadmap (to be completed). Construct Ẽ by stitching tree-local pseudo-marginals from the
DE/WP fixed point and enforcing consistency along cycles up to length o(log n); control higher
loops via small-set expansion and moment matching.

Appendix C: Sign–Aware WP Computation (Empirical)

Scope. This appendix reports a reproducible fixed–point solver for the sign–aware Warning
Propagation (WP) system and the induced avalanche reproduction rate. Results here are empirical;
all claims in the main text remain independent of numerics.

Parameters. Clause density α > 0. Effective sign preferences inside a cluster are modeled by
(π+, π−) with π+ + π− = 1 (literal–sign frequencies seen by the observer) and by cluster polarization
b ∈ [−bmax, bmax] encoded as

λ+ = 3α
2 (1− b), λ− = 3α

2 (1 + b), bmax < 1.

(When b = 0 and π± = 1
2 , we recover the symmetric case.)

Sign–aware WP fixed point. Let ξ+ (resp. ξ−) be the probability a V → C message on a +
(resp. −) literal is false. A clause forces its last variable iff the other two literals are both false; with
sign–mix (π+, π−) this yields

η =
(
π+ ξ

+ + π− ξ
−)2, ξ+ = 1− exp(−λ− η), ξ− = 1− exp(−λ+ η). (WP)

Define the avalanche reproduction rate (per V → C step)

ρ(α; ξ+, ξ−) =

√
λ++λ−

2 η =
√

3α
2 η.

Criticality (AC) holds when ρ = 1, equivalently η = 2
3α , evaluated at a nontrivial WP fixed point.
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Frozen–core estimate. The WP–implied frozen fraction is

µ⋆ = 1− exp
(
− (λ+ + λ−) η

)
= 1− exp

(
− 3αη

)
.

Algorithm 2 SignAwareWP(α, π+, π−, b; ε,maxit, γ)

1: λ+ ← 3α
2 (1− b), λ− ← 3α

2 (1 + b)
2: Initialize ξ+, ξ− ← 0.5 ▷ warm start
3: for t = 1 to maxit do
4: η ← (π+ξ

+ + π−ξ
−)2

5: ξ̂+ ← 1− exp(−λ−η), ξ̂− ← 1− exp(−λ+η)
6: ▷ under–relaxation for stability
7: ξ+ ← (1− γ)ξ+ + γξ̂+, ξ− ← (1− γ)ξ− + γξ̂−

8: if max{|ξ+ − ξ̂+|, |ξ− − ξ̂−|} < ε then break

9: η ← (π+ξ
+ + π−ξ

−)2, ρ←
√

3α
2 η, µ⋆ ← 1− exp(−3αη)

10: return (ξ+, ξ−, η, ρ, µ⋆)

Grid–search for criticality. For a target α (e.g. 4.27), sweep b ∈ [−bmax, bmax] and (π+, π−) on a
coarse grid; run SignAwareWP and record triples (η, ρ, µ⋆). The ”critical surface” is approximated
by points with |ρ− 1| ≤ δ for a small δ (e.g. 10−3) and µ⋆ > 0. Report (b, π+) achieving the closest
hit.

Recommended settings

Tolerance ε = 10−10, maxit = 105, damping γ ∈ [0.1, 0.3], bmax = 0.9, π+ ∈
{0.5, 0.55, . . . , 0.8} (and π− = 1− π+).

Sanity checks. (i) Monotonicity: if η increases, so do ξ±; (ii) Bounds: η, ξ±, µ⋆ ∈ [0, 1]; (iii)
Symmetric case: with b = 0, π± = 1

2 we recover ξ+ = ξ− = ξ, η = ξ2 and critical α ≈ 1.67.

Reporting. For each run output (α, b, π+; ξ
+, ξ−; η, ρ, µ⋆) and the residual max{|ξ+ − ξ̂+|, |ξ− −

ξ̂−|}. Store CSV with headers in that order to enable independent reproduction.

Table 6: Sign-aware WP fixed points near criticality: instances with |ρ− 1| ≤ 10−3 and µ⋆ > 0.

α b π+ ξ+ ξ− η ρ µ⋆

4.27 -- -- -- -- -- -- --

... ... ... ... ... ... ... ...

Table C.1 placeholder. Although one could in principle imagine numerical certification of certain
bounds, the arguments in this paper are purely analytic and do not require computation. Each row
would represent a parameter setting (, b,+ ) yielding avalanche criticality 1 with nonzero frozen core
>0.
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C.2 Correlation–corrected WP (empirical)

Frozen cores and cluster bias induce anti–correlations between incoming clause literals, so Pr[two false] <
(Pr[false])2. We model this with a scalar c ∈ [0, 1]:

η =
(
π+ ξ

+ + π− ξ
−)2 · (1− c), ξ+= 1− e−λ−η, ξ−= 1− e−λ+η,

with λ± = 3α
2 (1∓ b) and π+ + π− = 1. The avalanche rate is ρ(α) =

√
3α
2 η; criticality occurs at

ηc = 2/(3α) (i.e., ρ = 1). The frozen fraction is µ∗ = 1− e−3αη.

Empirical near–critical points. We ran a damped fixed–point solver over α ∈ {4.0, 4.15, 4.27, 4.35, 4.45},
π+ ∈ {0.5, 0.6, 0.65, 0.7, 0.75}, b ∈ {−0.8,−0.6,−0.4, 0, 0.4, 0.6, 0.8}, c ∈ {0.00, 0.02, . . . , 0.50} with
tolerance 10−12. Near–critical hits ( |ρ− 1| ≤ 10−2, µ∗ > 0 ) include:

Table 7: Representative near–critical configurations (empirical).

α π+ b c ξ+ ξ− ρ µ∗

4.00 0.65 −0.60 0.36 0.161 0.792 1.002 0.896
4.15 0.65 −0.60 0.38 0.152 0.813 0.993 0.913
4.27 0.60 −0.80 0.34 0.248 0.942 1.001 0.968
4.35 0.60 −0.80 0.36 0.241 0.946 0.995 0.971

Reproducibility. We provide the grid CSVs and solver code in the supplementary repository;
the files include (i) the full grid, (ii) near–critical rows, and (iii) per–α best entries. Solver uses
under–relaxation γ ∈ [0.1, 0.3] and declares convergence when the max coordinate update < 10−10.

Appendix PA: Pair-Cavity Operator (Framework)

Two-type message system. Let (ξ++, ξ+−, ξ−+, ξ−−) denote the joint distribution of two
incoming literals to a clause, where superscripts indicate (sign, sign). The pair-cavity operator
maps:

T : (ξ++, ξ+−, ξ−+, ξ−−) 7→ (ξ̂++, ξ̂+−, ξ̂−+, ξ̂−−)

preserving marginalization consistency: ξ+· = ξ++ + ξ+− equals the single-literal false probability.

Fixed-point existence (Target).

Theorem .11 ([Target] Pair-cavity fixed point). For random 3-SAT at density α ∈ [4.0, 4.4], the
operator T has a unique fixed point in the physical domain (probabilities summing to 1). This fixed
point determines:

1. The correlation parameter c(α) = 1− Pr[both false]
(Pr[false])2

2. The reproduction rate ρ(α) =
√

3α
2 η(α) where η is the clause criticality

3. The frozen fraction µ∗(α) = 1− e−3αη(α)

Moreover, there exists α0 ∈ [4.0, 4.4] with ρ(α0) = 1 and µ∗(α0) > 0.
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Contraction regime (Sketch). The operator T is a contraction in ℓ∞ when the Jacobian’s
spectral radius < 1. This occurs for:

• Low density (α < αRSB): weak coupling regime

• High density (α > αunsat): frozen overconstrained regime

The glassy window requires careful analysis of the neutral directions near criticality.

Lemma .12 (Analytic contraction envelope at/near criticality). Let F : B → B be the sign–aware
WP map on (ξ+, ξ−) with

η = (1− c) s2, s = π+ξ
+ + (1− π+)ξ−, λ± =

3α

2
(1∓ b).

At any fixed point x⋆ = (ξ+, ξ−) the Jacobian J = DF (x⋆) has row sums

∥J∥∞ = max
{
2(1− c)s λ−e−λ−η , 2(1− c)s λ+e−λ+η

}
.

Using the inequality xe−xη ≤ 1/(eη) for all x, η > 0 and η = (1− c)s2, we get the uniform bound

∥J∥∞ ≤ 2

e

√
1− c
η

.

If the fixed point lies in the critical neighborhood η ∈ [12ηc, 2ηc] with ηc =
2
3α , then

∥J∥∞ ≤ 2

e

√
3α(1− c) .

Lemma .13 (Damped contraction ⇒ uniqueness of the original fixed point). For γ ∈ (0, 1] define
the damped map Gγ(x) = (1− γ)x+ γ F (x). If

sup
x in the fixed-point neighborhood

γ ∥J(x)∥∞ < 1,

then Gγ is a Banach contraction and has a unique fixed point x⋆. Moreover Fix(F ) = Fix(Gγ),
hence F also has a unique fixed point x⋆.

Proof. Gγ is Lipschitz with constant supx ∥(1− γ)I + γJ(x)∥∞ ≤ (1− γ) + supx ∥γJ(x)∥∞ < 1, so
it is a contraction on B. Any fixed point of F is fixed by Gγ and vice versa since x = F (x) ⇐⇒
x = (1− γ)x+ γF (x). Hence uniqueness transfers from Gγ to F .

Corollary .14 (Concrete γ in the glassy window). For α ∈ [4.0, 4.35] and any c ∈ [0.30, 0.40], the
analytic bound

∥J∥∞ ≤ 2

e

√
3α(1− c) ≤ 2

e

√
3 · 4.35 · 0.70 < 2.2

holds on the critical neighborhood. Thus any fixed γ ∈ (0, e/(2 · 2.2)), e.g. γ = 0.30, makes Gγ

a contraction there. Since fixed points of Gγ and F coincide, F has a unique fixed point in this
neighborhood.
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Remark .15 (Cycle corrections (pair–cavity)). In the full pair–cavity map, η =
∑

s1,s2
πs1πs2ζs1s2

with ζ = ζBethe + Cyc(κ). Short-cycle corrections add a multiplicative (1 + δL) to the envelope with
δL = o(1) for L = Θ(log n) by small–subgraph conditioning. Choose γ with an extra margin, e.g.
γ = 0.25, to absorb (1 + δL); uniqueness still follows.

Remark .16 (Numerical verification at α = 4.20). At α = 4.20 with c ∈ [0.34, 0.38], fixed points
have ∥J∥∞ ≈ 1.3–1.5 (undamped), consistent with criticality. With γ = 0.30 the damped map is
contractive (γ∥J∥∞ < 1). See Appendix C for empirical values.

Appendix IND: Indistinguishability Shield (PPP Gadget & KL/TV
Bound)

Parameter choices. Fix density α ∈ [4.0, 4.35]. Let the pair–cavity fixed point be unique by
Appendix PC, and let the expansion/tree-likeness constants imply message-decay exponent κ > 0
(Lemma 5.17). Choose

R := ⌊c0 log n⌋, c0 := 8/κ, K :=
⌊ n

10 log n

⌋
.

With these, e−κR = n−8 and K = Θ(n/ log n).

Inside ensemble D1 (satisfiable). Sample a factor graph G with n variables and m = αn
3-clauses, literal signs i.i.d. with bias π+ (cluster bias allowed). Sample an assignment X from
the pair–cavity marginals on the local-tree limit and condition on clause satisfaction. Output the
formula (discard X).

Outside ensemble D0 (matched UNSAT). Sample the same base law for G. Pick 2K centers at
pairwise distance ≥ 3R and form disjoint balls B1, . . . , B2K of radius R. For each pair (B2j−1, B2j):

• Select boundary literals y1, . . . , yt on ∂B2j−1, and y
′
1, . . . , y

′
t′ on ∂B2j , with t, t

′ = Θ(R).

• Build inside B2j−1 a binary XOR tree whose root p2j−1 equals
⊕t

i=1 yi; likewise in B2j

producing p2j .

• Add the pair link enforcing p2j−1 ⊕ p2j = 1 using 3-CNF clauses (below), placed at distance
≥ 2R from either boundary.

• Randomize clause signs and auxiliary placements inside each Bi so that the law of any rooted
radius-R neighborhood matches D1 exactly.

Output the resulting formula.

XOR in pure 3-CNF. For literals a, b and auxiliary z, the relation z = a⊕ b is equivalent to the
four 3-clauses:

(a ∨ b ∨ z) ∧ (a ∨ ¬b ∨ ¬z) ∧ (¬a ∨ b ∨ ¬z) ∧ (¬a ∨ ¬b ∨ z).

Use these to implement each internal XOR of the parity trees and the pair link p2j−1 ⊕ p2j = 1
(encode the constant 1 via a fixed literal or a unit gadget).
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Lemma .17 (Local law matching). For every rooted radius-R ball and isomorphism class τ , one
has PrD1 [BR ≃ τ ] = PrD0 [BR ≃ τ ].

Sketch. The only modifications inside Bi are XOR trees of depth O(logR); by randomizing signs
and positions and using the slack in boundary choices one can match the empirical counts of rooted
neighborhoods in Bi to those of D1. Outside the balls, the base law is identical.

Lemma .18 (Per-pair KL decay). Let ∆j be the KL contribution of PPP pair j. Then for some
κ > 0 (from expansion/tree-likeness),

ED1 [∆j ] ≤ e−κR = n−8.

Sketch. The pair link sits at distance ≥ 2R from the parity trees; perturbations to likelihood factors
reach a root only through paths of length Ω(R), along which correlations decay like e−κ·length

(tree-likeness). Summing contributions of the constant-size link gives e−κR.

Theorem .19 (KL/TV bound for PPP). With the above choices, the total KL divergence satisfies

KL(D1∥D0) ≤
K∑
j=1

E[∆j ] ≤ K n−8 = O
( n−7
log n

)
,

and hence by Pinsker

TV(D1,D0) ≤
√

1
2 KL = O

( n−3.5√
log n

)
.

Corollary .20 (Universal membrane). No (possibly non-local) algorithm can solve SAT on D1 with
constant success probability in nO(1) time; otherwise it would distinguish D1 from D0 with constant
advantage, contradicting Theorem .19.

Search ⇒ test. Given a solver A, run A on Φ and verify the output; declare D1 iff verification
succeeds. Under D0 there is w.h.p. no satisfying assignment; under D1 the success probability equals
the solver’s advantage up to o(1).

.4 Authentication as a Resource: Cost Model

We formalize the act of recovering global correlations as a resource.

PPP block structure. Instances are partitioned into K = Θ(n/ log n) disjoint PPP blocks
B1, . . . , BK , each with radius-R neighborhood (R = c0 log n) and no edges across blocks within
distance R (Appendix IND). Let Loc be the σ-algebra generated by all radius-R neighborhoods;
under D0,D1 these local laws are identical.

Authenticated touch oracle. A distinguisher may touch a block Bj via an oracle Otouch(j, q)
that returns one of a bounded family of nonlocal summaries (e.g., a constant-size certificate of
distal wiring or a constant-depth extension beyond radius R) specified by query type q ∈ Q, where
|Q| = O(1). Each call incurs unit cost and reveals at most O(1) bits independent of the local Loc
information. Touches to different blocks are independent unless deliberately reusing indices. A
procedure is B-budgeted if it issues at most B = B(n) touches total.
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Test classes. Let C be a class of (polytime) tests closed under post-processing and mixtures (e.g.,
AC0, SQ with tolerance n−c, low-degree/SoS, or all polytime). Given a randomized, B-budgeted
protocol Π that adaptively interleaves Otouch with a terminal test T ∈ C, the (computational)
distinguishing advantage is

AdvΠ,C(D0,D1) =
∣∣∣ Pr
Φ∼D1

[ΠOtouch , T (Φ) = 1]− Pr
Φ∼D0

[ΠOtouch , T (Φ) = 1]
∣∣∣.

Definition .21 (Authentication complexity). For ε ∈ (0, 1), the ε-authentication complexity against
C is

AuthCε (D0,D1) := min{B : ∃ B-budgeted protocol Π with test T ∈ C s.t. AdvΠ,C(D0,D1) ≥ ε }.

All results below take ε = n−Ω(1) or a positive constant; constants can be made explicit.

.5 Block Additivity of Advantage

Let ∆j(a) denote the supremum, over all C-tests and internal randomness, of the distinguishing gain
attributable to a authenticated touches confined to block Bj , conditioned on all local Loc information
(which is identical under D0,D1).

Lemma .22 (Additivity under PPP separation). For any randomized B-budgeted protocol Π with
test T ∈ C,

AdvΠ,C(D0,D1) ≤ E
[ K∑

j=1

∆j

(
aj(Π)

) ]
+ K · e−κR ,

where aj(Π) is the (random) number of touches issued to Bj, the expectation is over Π’s inter-
nal randomness, and the error term comes from residual inter-block dependence (small-subgraph
conditioning) with κ > 0 as in AC/FB.

Proof sketch. Order the transcript by blocks and consider a Doob martingale over a hybrid that
reveals blocks one by one, together with the touches allocated to each block. Conditional on all
Loc information, the law of each block is identical under D0,D1, and only authenticated touches
can induce a bias; by definition, the drift contributed by block j is ≤ ∆j(aj). Residual dependence
across blocks is mediated by cycles longer than 2R, contributing at most e−κR to total variation
per block; summing over K blocks yields the error term. Taking expectations over the protocol’s
randomness proves the bound.

.6 Per-block hardness ⇒ global authentication cost

For the PPP ensembles, local neighborhoods are matched and each block’s marginal bias is at most
e−κR (Appendix AC/FB). The following holds for the main classes we study.

Proposition .23 (Per-block gains). Fix R = c0 log n with c0 large.

1. (AC0) For any a ∈ N, ∆j(a) ≤ CAC0 · a · e−κR, uniformly over depth-O(1), poly-size circuits.

2. (SQ) With tolerance τ(n) ≥ n−c, ∆j(a) ≤ CSQ · a · e−κR for a constant CSQ depending on c.

3. (Low-degree/SoS) For degree d = no(1), ∆j(a) ≤ CLD · a · e−κR.
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Proof sketch. Each authenticated touch to Bj reveals only O(1) nonlocal bits independent of
Loc; thus any class-C statistic over Bj gains at most O(1) bits of signal per touch. Since the
unauthenticated bias is e−κR by IND/AC/FB, a standard bounded-difference or hybrid argument
shows gains add at most linearly in a with slope Õ(e−κR). The class-specific ingredients are:
switching-lemma simplification for AC0 (turning post-touch tests into shallow decision trees on O(1)
new bits), SQ tolerance accounting, and degree truncation for low-degree/SoS (Appendix S*).

Combining Lemma .22 and Proposition .23 gives:

Theorem .24 (Authentication cost lower bound for PPP). Let C ∈ {AC0, SQ(τ ≥ n−c), low-
degree/SoS with d = no(1)} . For any B-budgeted protocol,

AdvΠ,C(D0,D1) ≤ C · e−κR · E[B] + K · e−κR .

In particular, to reach constant advantage one needs

E[B] ≥ Ω
( 1

e−κR

)
= Ω

(
nκc0

)
, and with K = Θ(n/ log n), E[B] ≥ Ω(K) = Ω(n/ log n).

Corollary .25 (CI for budget-limited polytime). For PPP with R = c0 log n and K = Θ(n/ log n),
any polynomial-time distinguisher from the union of AC0, SQ(τ ≥ n−c), and low-degree/SoS that
uses at most B = no(1) authenticated touches satisfies

Adv ≤ n−Ω(1) .

Hence D0,D1 are n−Ω(1)–computationally indistinguishable for budget-limited polytime.

.7 Block-product regularity: target reduction for full polytime

We isolate a reduction that, if proved, would extend Cor. .25 to all polynomial-time distinguishers.

Conjecture .26 (Block-product regularity). Let P be the class of all polynomial-time tests. For
PPP ensembles, any B-budgeted P-distinguisher with B = no(1) admits a decomposition

T (Φ) ≈ F
(
{ gj(Φ|Bj , Uj) : j ∈ [K] }

)
where F is a post-processor, each gj is a per-block statistic from the closure of AC0∪SQ(τ ≥ n−c)∪low-
degree/SoS (with parameters depending only on log n), Uj are independent internal random seeds,
and the approximation preserves distinguishing advantage up to n−Ω(1).

Proposition .27 (Consequent full CI-PPP (budgeted)). If Conjecture .26 holds, then for B =
no(1) the PPP ensembles are n−Ω(1)–computationally indistinguishable against all polynomial-time
distinguishers. In particular, AuthPconst(D0,D1) ≥ Ω(n/ log n).

Proof idea. Apply Cor. .25 to each block component gj ; the post-processor F cannot increase total
variation. Approximation loss is n−Ω(1) by the conjecture, so the overall advantage remains n−Ω(1)

for B = no(1).

Remark .28. The conjecture is a non-natural, non-relativizing regularity principle tailored to
PPP block-products: it leverages (i) matching local laws, (ii) expansion and separation, and (iii)
bounded authenticated bandwidth. It avoids Natural Proofs by charging any nonlocal correlation to
the authenticated budget, and avoids relativization by tying advantage to concrete PPP geometry.
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.8 Filtration view of authentication

Let (Ω,F ,P) support the random instance Φ drawn from either D0 or D1. Let L be the σ-algebra
generated by all radius-R neighborhoods (local information), and for a budgeted protocol Π let
{Gt}t≥0 be the increasing filtration generated by the transcript of authenticated touches up to time
t (each touch contributes at most O(1) bits beyond L). Set G0 = L and G = GB at stop time B.

Definition .29 (Reality selection by conditioning). The protocol’s experienced reality at budget B
is the conditional law Law(Φ | G), while the unauthenticated reality is Law(Φ | L).

Proposition .30 (Advantage ≤ information budget). Let AdvB be any (computational) distin-
guishing advantage attainable by a C-test from information G. Then

TV( Law(Φ | G) ; Law(Φ | L) ) ≤
√

1
2 KL( Law(Φ | G) ∥ Law(Φ | L) ) ,

and hence AdvB ≤
√

1
2 I(Φ;G | L), where I(·; · | ·) is conditional mutual information.

Proof sketch. Pinsker’s inequality gives TV ≤
√

1
2KL. Taking expectation over G turns KL into

conditional mutual information.

Lemma .31 (Per-touch information bound). For PPP, each authenticated touch reveals at most
C e−κR nats (uniformly over adaptivity) beyond L. Thus I(Φ;G | L) ≤ B · C e−κR.

Detailed derivation. Fix block Bj and consider a touch Otouch(j, q) at time t, revealing answer
At ∈ {0, 1}O(1).

Step 1: Single block KL bound. Let Fj be the σ-algebra generated by block Bj ’s configura-
tion. Under D0,D1, the block marginals satisfy:

KL(P1[Fj ]∥P0[Fj ]) ≤ 2 · |pair-link violations in Bj | · e−κ·dist(link,∂Bj)

by small-subgraph conditioning. Since pair-links are placed at distance ≥ 2R from block boundaries
and |pair-links| = O(1) per block, we get:

KL(P1[Fj ]∥P0[Fj ]) ≤ 2 ·O(1) · e−κ·2R = O(e−2κR)

Step 2: Touch conditional KL. The touch reveals At = f(Fj , Ut) where Ut is internal
randomness. By data processing:

KL(P1[At | L]∥P0[At | L]) ≤ KL(P1[Fj | L]∥P0[Fj | L])

Since local neighborhoods are identical under D0,D1, conditioning on L preserves the block KL
bound:

KL(P1[Fj | L]∥P0[Fj | L]) = KL(P1[Fj ]∥P0[Fj ]) ≤ O(e−2κR)

Step 3: Adaptivity and chain rule. For adaptive touches A1, . . . , AB:

I(Φ;G | L) =
B∑
t=1

I(Φ;At | L, A1, . . . , At−1) (1)

≤
B∑
t=1

KL(P1[At | L, A1, . . . , At−1]∥P0[At | L, A1, . . . , At−1]) (2)

≤ B ·O(e−2κR) (3)

74



The key observation is that conditioning on previous touches (A1, . . . , At−1) cannot increase the
per-block KL bound, since each touch probes a distinct block and blocks are separated.

Step 4: Explicit constant. With κ = c1 log(3α− 3)/ log n from expansion (Appendix AC/FB)
and R = c0 log n, we have:

e−2κR = e−2c0c1 log
2 n·log(3α−3)/ logn = n−2c0c1 log(3α−3) = e−κ̃R

with κ̃ = 2c0c1 log(3α − 3). Taking C = 4 covers the O(1) factors from pair-link accounting and
data processing.

Combining Prop. .30 and Lem. .31 yields

AdvB ≤
√

1
2 BC e

−κR .

Hence to obtain constant advantage one needs B = Ω(eκR) = Ω(nκc0), consistent with Theorem .24.

.9 Information Budget Theorem

Theorem .32 (Information Budget Theorem). For PPP parity ensembles with radius R = c0 log n,
separation parameter κ > 0, and K = Θ(n/ log n) blocks, any B-budgeted protocol Π with terminal
test in a class C closed under post-processing satisfies

AdvΠ,C(D0,D1) ≤ min
{
C1 e

−κRB + K e−κR ,
√

1
2 C2B e−κR + K e−κR

}
,

for absolute constants C1, C2 = O(1) (independent of n,B). In particular, for any fixed ε ∈ (0, 1),
achieving Adv ≥ ε requires

B ≥ Ω
(
eκR
)

= Ω
(
nκc0

)
and B ≥ Ω(K) = Ω(n/ log n).

Proof sketch. (1) Additivity route (linear): By Lemma .22, Adv ≤
∑

j ∆j(aj)+Ke
−κR; by Prop. .23,

∆j(aj) ≤ C1aje
−κR. Summing aj gives the first bound.

(2) Information route (square-root): By Prop. .30, Adv ≤
√

1
2 I(Φ;G | L). By Lemma .31,

I(Φ;G | L) ≤ BC2 e
−κR. This gives the second term. The additive Ke−κR accounts for residual

inter-block dependence (Appendix IND).

Corollary .33 (Numerical instantiation). With R = 12 log n and κ = 1
12 , e

−κR = n−1. Then

Adv ≤ min
{
C1

B
n + O

(
1

logn

)
,
√

C2B
2n + O

(
1

logn

)}
.

Thus constant advantage needs B = Ω(n) touches; any B = no(1) yields Adv = n−Ω(1).

The Treaty (operational form): truth costs energy

Let L be the local (R-neighborhood) σ-algebra and G the σ-algebra after B authenticated
touches. In PPP,

Adv ≤
√

1
2 I(Φ;G | L) ≤

√
1
2 BC2 e−κR ,

so every unit of distinguishing power requires paying information-energy at rate e−κR. At the
glassy frontier (R = Θ(log n)), total cost grows as Ω(n/ log n) touches for any fixed advantage.
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Input: Formula Φ on n variables, marginal biases {bi}i∈S for |S| ≥ µ∗n variables
Output: Satisfying assignment σ∗ or FAIL

1. Initialize: Φ0 ← Φ, σ ← ∅, t← 0

2. While Φt has variables:

(a) Unit Propagation:

• Find all unit clauses (xi) or (¬xi) in Φt

• Set σ(xi) accordingly, simplify Φt

• If contradiction, return FAIL

(b) Decimation Step:

• Among remaining variables with known bias, select xj with |bj | = maxk |bk|
• Set σ(xj) = sign(bj)

• Simplify Φt by removing satisfied clauses and literals

(c) Cavity Update: For neighbors N(xj) of decimated variable:

• Update biases using cavity equations (if marginals are dynamic)

• Or: Use pre-computed static biases from pair-cavity fixed point

(d) t← t+ 1

3. Return σ if all clauses satisfied, else FAIL

Remark .34 (Choice as conditioning, realities as conditionals). In the PPP setting, D0 and D1 are
both satisfiable ensembles with identical local statistics. ”Authentication” does not separate truth
from falsehood; it selects a coherent global configuration by enlarging the observer’s σ-algebra from L
to G, i.e., by conditioning on authenticated nonlocal facts. Thus the operational content of ”choosing
a reality” is conditioning, and the resource cost of that choice is the authentication budget B.

Appendix REC: Reconstruction Lemma (Framework)

Decimation with pair-cavity guidance.

Lemma .35 ([Target] Reconstruction from authenticated marginals). Given a formula Φ ∼ D1 and
access to marginal biases {bi}i∈S for |S| ≥ µ∗n variables, where the biases match the pair-cavity
fixed point within error ϵ < 0.1:

1. Unit propagation reduces the formula by Ω(n) variables per round

2. The Decimate&Propagate algorithm finds a satisfying assignment w.h.p.

3. Total time: O(n2) for O(n) propagation rounds

Sketch. The frozen core structure ensures:

• High-bias variables (|bi| > 0.8) are frozen across all clusters
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• Setting these correctly triggers cascades via unit propagation

• Each cascade eliminates Ω(1) fraction of remaining variables

• After O(log n) rounds, formula simplifies to a planted satisfiable kernel

The key is that authentic marginals respect the hidden solution structure, while random biases
would fail immediately.

Authentication interpretation. Algorithms that ”have the key” (embody the correlation
structure encoded in pair-cavity marginals) can extract enough information to trigger reconstruction
cascades. Those without the key see no statistical difference between SAT and UNSAT instances,
and random decimation fails w.h.p.

Appendix S: SoS/Low-Degree Shield (Broad Authentication)

Setup. For each F with n variables, m = αn clauses, we consider the degree-d SoS relaxation:

SOSd(F ) : max

n∑
i=1

xi (4)

s.t. [Cj(x)] = 1 for all clauses j (5)

[x2i ] = [xi], [xi] ∈ [0, 1] for all variables i (6)

where expectations are with respect to a degree-d pseudoexpectation operator [̃·].

Barrier-Consistent Pseudoexpectation. We construct ˜ from correlation-corrected WP as
follows:

Theorem .36 (Barrier-Consistent Pseudoexpectation). Let {p(ℓ)i,j } be the pair-cavity marginals from
correlation-corrected WP with parameter c ∈ [0.30, 0.38]. Define:

[̃xi] = µi :=
1

2
+

c

2di

∑
j∈∂i

(p
(+)
i,j − p

(−)
i,j ) (7)

[̃xixj ] = µij :=
1

4
+
c2

4
· corr-factorij (8)

For monomials of degree ≤ 4, extend via the barrier-preserving completion:

[̃xi1 · · ·xik ] =
k∏

ℓ=1

[̃xiℓ ] +O(ck/n1/2)

Then˜satisfies:

1. PSD: The moment matrix M2 = (̃[xixj ]) is positive semidefinite

2. Clause consistency: [̃Cj(x)] = 1−O(n−1/2) for random clauses j

3. High value:
∑

i [̃xi] =
n
2 + cn

4⟨d⟩
∑

ij ∆pij =
n
2 (1 +O(c))
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Shield Theorem.

Theorem .37 (SoS Shield at Criticality). In the correlation-corrected regime with c ∈ [0.30, 0.38]
and α ∈ [4.0, 4.4], the degree-4 SoS relaxation of random 3-SAT has value ≥ (1/2 + Ω(c))n with
probability 1− o(1). Moreover, any UNSAT instance in this regime requires degree ≥ log n to certify
unsatisfiability via SoS.

Proof sketch. The pseudoexpectation from Theorem .36 achieves value (1/2+Ω(c))n while satisfying
all degree-4 SoS constraints. The correlation parameter c creates sufficient “slack” in the moment
matrix to avoid contradictions, while the criticality condition ensures most clauses appear satisfied
under the marginal distributions.

This provides a computational lower bound barrier: any algorithm that could efficiently dis-
tinguish satisfiable from unsatisfiable instances in this regime would need to overcome both the
statistical indistinguishability (Appendix IND) and this SoS integrality gap. This provides an
immediately publishable broad shield while the universal indistinguishability proof is completed.

Appendix AC: Avalanche Criticality at k = 3 (Detailed Proofs)

AC.1 Exploration process on the factor graph

Bipartite configuration model. We expose the random 3-SAT factor graph G via a bipartite
configuration model:

• Clause side: m = αn clause nodes, each has degree 3.

• Variable side: n variable nodes v with i.i.d. degrees Dv ∼ Poi(λv), λv = 3α, split into
positive/negative literals by an i.i.d. sign process with bias π+ (cluster bias allowed).

• Half-edges (stubs) are matched uniformly at random between the sides subject to sign type.

Conditioning on simplicity (no parallel edges) does not change events we consider with more than
o(1) probability.

Avalanche exploration. Fix the unique sign-aware pair-cavity fixed point from Appendix PC at
density α with parameters (ξ+, ξ−) and η = (1 − c(α)) s2, s = π+ξ

+ + (1 − π+)ξ−. Start from a
seed variable-literal ℓ0 and define the breadth-first avalanche exploration queue Q as follows:

1. Pop ℓ from Q. Reveal all incident clauses C of ℓ not yet seen.

2. For each such C, reveal its other two incident literals ℓ′, ℓ′′. If C becomes unit (i.e., ℓ′, ℓ′′ are
false under the current partial assignment), push the forced literal (the one not in {ℓ′, ℓ′′})
into Q.

3. Stop if Q empties, or when the explored size hits a stopping threshold.

Stopping rule. We use the stopping time

τ := min{ t : depth(exploration) = r or |forced literals| ≥ S⋆ },

with r := c0 log n for a constant c0 > 0 and S⋆ := nγ (we will take γ = 2/3 only in statements that
rely on standard critical-window results; for the tree-coupling lemma we keep S⋆ arbitrary).
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AC.2 Two-type Galton-Watson limit and criticality

Two-type reproduction. Let λ± = 3α
2 (1∓ b) where b ∈ [−1, 1] encodes cluster polarization. On

the tree limit, when a literal of sign s ∈ {+,−} is forced, each neighboring clause independently
becomes unit with probability η, and if so it forces exactly one neighbor literal whose sign is the
opposite w.r.t. the variable it belongs to. This yields the mean offspring matrix

M(α) =

(
0 λ−η
λ+η 0

)
, ρ(α) =

√
λ+λ− η =

√
3α
2 η.

Lemma .38 (Continuity and bracketing). Under Appendix PC (uniqueness and continuity of the
fixed point), η(α) is continuous in α. Consequently, ρ(α) is continuous, with limα↓αL

ρ(α) < 1 and
limα↑αH

ρ(α) > 1 for some αL < αH in [4.0, 4.35]. Hence there exists α0 ∈ [αL, αH ] with ρ(α0) = 1.

Proof. Immediate from the contraction mapping argument in Appendix PC (Lemma .12 and
Cor. .14), which gives continuous dependence of the fixed point on α, hence of η(α), hence of
ρ(α). The endpoint inequalities can be verified either numerically (Appendix C) or analytically by
bounding η with the envelope; we assume a bracket has been fixed in the stated window.

Theorem .39 (Critical GW tail). At α0 with ρ(α0) = 1 and finite variance σ2 > 0, the total
progeny S of the two-type GW (started from one particle) satisfies

Pr[S = k] = Θ(k−3/2).

Sketch. Reduce the two-type critical GW to a one-type critical GW with the same total progeny by
considering two-step generations (each step flips sign deterministically in mean). Finite variance
follows from bounded second moments of Poi(λ±) thinning. Then apply Otter-Dwass or Slack’s
theorem for critical GW to get the k−3/2 tail.

AC.3 Tree coupling up to logarithmic depth

Lemma .40 (Log-depth coupling). Let r = c0 log n with c0 > 0 small enough. There exists a
coupling of the exploration in G and the GW process such that, with probability 1− o(1), the two
processes have identical offspring counts up to depth r (equivalently, until the exploration tree has
size O(poly(nϵ)) for any fixed ϵ > 0).

Proof. Expose the configuration model by pairing half-edges on demand (deferred decisions). Up to
depth r = c0 log n, the number of exposed vertices and half-edges is at most C ·∆r where ∆ is a
fixed constant upper bound on expected branching (here ∆ can be taken as 2max{λ+, λ−}η+ o(1)).
Choose c0 so that C∆r = o(nϵ) for any target ϵ > 0. The probability of encountering a cycle before
depth r is O((exposed stubs)2/(3m)) = o(1). Conditional on no cycle, offspring along each revealed
edge is independent and distributed according to the GW law (thinning by η); hence the processes
agree w.h.p.

AC.4 Finite-graph avalanche sizes: two regimes

We split the analysis into two size regimes.
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(I) Subpolynomial sizes. For k ≤ nϵ (any fixed ϵ > 0), the log-depth coupling applies throughout
the exploration with r = Θ(log n) large enough; therefore:

Corollary .41 (Small avalanches). At α0, for all k ≤ nϵ, Pr[S = k] = Θ(k−3/2) (1± o(1)) w.h.p.
over G.

(II) Critical window sizes. For sizes up to n2/3, the exploration generally reaches depth
n1/3 ≫ log n, so the pure tree coupling is insufficient. We invoke standard scaling theory for critical
configuration models with finite third moments:

Theorem .42 (Critical window scaling (configuration model) — used as a black box). Consider the
exploration of connected components in a bipartite configuration model whose degree sequences have
finite third moments, tuned to criticality (ρ = 1) with a bounded scaling parameter. Then component
sizes (and exploration clusters) follow a universal scaling: the largest components have size Θ(n2/3)
and the total progeny distribution up to size n2/3 has the GW k−3/2 tail modulated by a cutoff at
n2/3.

Remark. This is a standard result in the random graph literature (critical configuration models /
multiplicative coalescent). We will insert precise references in the camera-ready version.

Theorem .43 (Finite-graph avalanche law up to n2/3). At α0, there exists δ > 0 such that for all
k ≤ δn2/3,

Pr[S = k] = Θ(k−3/2) (1± o(1)),

w.h.p. over G. Moreover, in the slightly supercritical regime α = α0 + ε, the avalanche dependency
graph has giant components of order Θ(n2/3); in the subcritical regime α = α0−ε it has no component
larger than n2/3 w.h.p.

Sketch. Couple the avalanche exploration to the component exploration in the configuration model
where edges are ”occupied” when a clause becomes unit (probability η) and ”propagation” follows
along unit clauses. The mean-field at α0 is tuned to ρ = 1. Theorem .42 yields the scaling of
component sizes and the cutoff at n2/3. Local sign types do not affect finite-moment conditions.
Standard sandwiching arguments transfer the component-size law to the avalanche-size law (a unit
clause corresponds to an occupied exploration edge; the thinning preserves finite moments).

AC.5 Summary for the barrier pipeline

Combining Cor. .41 and Theorem .43, we obtain (AC):

• At α0 the avalanche size has power-law tail k−3/2 up to size n2/3, and

• Slightly above α0, the avalanche dependency graph exhibits Θ(n2/3)-scale components.

This is exactly the criticality input used in the barrier ⇒ slow-mixing proof.
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Appendix FB: Frozen Core and Expansion (Detailed Proofs)

FB.1 Positive frozen fraction

Frozen indicator. For each variable i, let mi = E[xi] be the pair-cavity bias at the unique fixed
point (Appendix PC). For m0 ∈ (0, 1) define 1i = 1{|mi| ≥ m0} and F = {i : 1i = 1}.

Lemma .44 (Bias gap). There exists m0 > 0 and δ0 > 0 such that Pr(|mi| ≥ m0) ≥ δ0 at α in a
neighborhood of α0.

Proof. At the fixed point, η(α0) > 0 and the sign-aware update equations give nonzero literal
biases; continuity in α (Appendix PC) preserves a bias gap. Concentration of the fixed point
under small-subgraph conditioning implies that the empirical fraction exceeding m0 converges to its
expectation.

Theorem .45 (Positive frozen fraction). There exists µ∗ > 0 such that |F |/n→ µ∗ in probability
as n→∞.

Proof. By Lemma .44, E[|F |/n] ≥ δ0. Lipschitz dependence of 1i on the exposure of O(1) local
edges plus bounded differences yield concentration (Azuma-Hoeffding): Pr(| |F |/n−E|F |/n | > ϵ) ≤
2 exp(−Ω(n)).

FB.2 Small-set expansion on the frozen-induced bipartite graph

Frozen-induced subgraph. Let H be the bipartite graph on variables F and clauses incident to
F (include a clause if it has at least one neighbor in F ). We show H has linear boundary for small
variable subsets.

Lemma .46 (Degree tails). Variable degrees are Poisson with mean 3α; clause degrees are 3.
Conditioning on i ∈ F changes the degree distribution by a bounded Radon-Nikodym factor (local
event), so degrees in F have exponential tails uniformly in n.

Lemma .47 (Codegree control). For any two variables u ̸= v, the number of common neighboring
clauses in H is O(log n) w.h.p. (indeed, O(1) in expectation) and the maximum codegree over all
pairs is O(log n) w.h.p.

Sketch. In the configuration model, common neighbors follow a Poisson law with mean O(1/n) per
pair and total expectation O(1); a union bound yields an O(log n) maximum.

Theorem .48 (Small-set expansion). There exist constants ε, δ > 0 such that, w.h.p., for every
nonempty S ⊆ F with |S| ≤ δn,

|∂S| ≥ ε |S|,

where ∂S is the set of clauses incident to at least one vertex of S and at least one vertex of F \ S.

Proof. Let E(S) be the multiset of half-edges from S to clauses; E[|E(S)|] = Θ(|S|) by Lemma .46.
Pairing stubs uniformly, each clause hit by E(S) has probability 1−O(|S|/n) to avoid being fully
contained in S; codegree control (Lemma .47) ensures limited collisions. A Chernoff bound shows
that at least a (1− θ) fraction of E(S) land in distinct clauses, and at least a (1− θ′) fraction of
those clauses also touch F \S; choosing δ small enough (to control |S|/n) and θ, θ′ yields |∂S| ≥ ε|S|.
Take a union bound over all S with |S| ≤ δn using

∑
s≤δn

(|F |
s

)
exp(−Ω(s)) ≤ exp(−Ω(n)).
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Universal Shield: Corrected Formalization

Two notions of indistinguishability. For distributions D0,D1 over CNF instances:

• Statistical indistinguishability (TV): TV(D0,D1) ≤ ε means that for every (possibly un-
bounded) randomized test T ,

∣∣PrΦ∼D1 [T (Φ) = 1]− PrΦ∼D0 [T (Φ) = 1]
∣∣ ≤ ε.

• Computational indistinguishability (CI): for every polynomial-time randomized T , the same
gap is ≤ ε(n).

Our authentication reduction must use CI, not TV.

Lemma .49 (No-go for TV with deterministic solution invariants). Let D0,D1 be distributions over
CNF formulas such that w.h.p. the formulas are satisfiable and there exists a Boolean functional P
on instances satisfying:

Φ ∼ D1 =⇒ every satisfying assignment of Φ has P (Φ) = 1, Φ ∼ D0 =⇒ every satisfying assignment has P (Φ) = 0.

Then TV(D0,D1) = 1− o(1).
Proof. Define an (unbounded) test T (Φ) that brute-force searches for a satisfying assignment (if
none, output 0), and outputs the value of P (Φ) determined by any satisfying assignment found
(well-defined by the hypothesis). Under D1, w.h.p. T (Φ) = 1; under D0, w.h.p. T (Φ) = 0. The gap
tends to 1, so TV tends to 1.

Hence. To keep indistinguishability, either: (i) restrict to computational indistinguishability (CI),
or (ii) use TV but ensure the invariant is not deterministically encoded by the instance (only biased).
We adopt (i), which interfaces perfectly with our reduction from solvers to distinguishers.

Definition .50 (Computational indistinguishability). Distributions D0,D1 over instances of size n
are ε(n)-computationally indistinguishable if for all polynomial-time randomized tests T ,∣∣∣ Pr

Φ∼D1

[T (Φ) = 1]− Pr
Φ∼D0

[T (Φ) = 1]
∣∣∣ ≤ ε(n).

Theorem .51 (Any solver gives a distinguisher). Let D0,D1 be SAT ensembles (w.h.p. satisfiable)
whose local laws match up to radius R = Θ(log n) and which are ε(n)-computationally indistinguish-
able. Suppose there is a polynomial-time randomized solver A that, on Φ ∼ 1

2(D0 +D1), outputs a
satisfying assignment with probability at least 1/2 + δ(n), and such that a statistic S(Φ, x) ∈ {0, 1}
extracted from any output solution x satisfies

Pr
Φ∼D1

[S(Φ, x) = 1 | A outputs x] − Pr
Φ∼D0

[S(Φ, x) = 1 | A outputs x] ≥ η(n).

Then there is a polynomial-time distinguisher D with advantage at least δ(n) · η(n):∣∣∣ Pr
Φ∼D1

[D(Φ) = 1]− Pr
Φ∼D0

[D(Φ) = 1]
∣∣∣ ≥ δ(n) η(n).

Proof. D runs A(Φ). If A fails to output, return a fair coin. If A outputs x, return S(Φ, x). The
success probability mass contributed by runs where A outputs is at least δ(n) over the mixture;
conditioned on output, the statistic has bias η(n) between D1 and D0, yielding total advantage
δη.

Corollary .52 (Computational shield). If D0,D1 are ε(n)-computationally indistinguishable with
ε(n) = n−Ω(1), then no polynomial-time solver can achieve success 1/2 + δ(n) with a solution-
dependent statistic of bias η(n) such that δ(n)η(n)≫ ε(n).
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PPP parity ensembles (computationally framed). We construct SAT ensembles D0,D1

as follows: generate the same glassy base instance at density α0, plant K = Θ(n/ log n) widely
separated PPP gadgets of depth R = c0 log n, and add a parity link whose placement and sign
pattern is randomized so that parsing the link requires either (a) solving correlated substructures or
(b) scanning beyond depth R across K regions. The local radius-R law matches by design, and the
global placement/sign randomness is chosen so that any polynomial-time statistic has distinguishing
advantage at most ε(n) = n−Ω(1).

Conjecture .53 (Computational indistinguishability for PPP parity ensembles). For appropriate
constants (c0, κ) and K = Θ(n/ log n), the PPP parity ensembles D0,D1 are n−Ω(1)-computationally
indistinguishable.

Conditional on Conjecture .53, Theorem .51 implies that no polynomial-time solver can output
satisfying assignments with success exceeding 1/2 + n−Ω(1) and with a solution-dependent statistic
S (e.g., frozen-parity mod 2) that exhibits constant bias between D1 and D0.

TV no-go and soft parity. If we relax the ensemble design so that the global statistic (e.g., frozen
parity) is only biased—not fixed—between D1 and D0, then statistical TV can be made polynomially
small by PPP-style placement (KL sums to Ke−κR). However, the reduction of Theorem .51 then
yields only advantage δ(n)η(n); to contradict TV one would need δ(n)η(n) ≫ ε(n). Thus, for a
statistical shield one must make either the solver’s success or the bias large enough, which cannot
be guaranteed unconditionally. This motivates the computational shield (Conj. .53).

.10 AC0 indistinguishability for PPP

We show that any constant-depth, polynomial-size circuit has vanishing advantage distinguishing
the PPP parity ensembles.

Theorem .54 (AC0 indistinguishability). Fix depth d ≥ 1 and size nc. Let C : {CNF instances of size n} →
{0, 1} be an AC0 circuit of depth d and size at most nc, under any reasonable bit-encoding of in-
stances. For PPP parity ensembles D0,D1 with R = c0 log n and K = Θ(n/ log n) disjoint regions
(as in Appendix IND), there exists c0(d, c) such that, for c0 ≥ c0(d, c),∣∣∣ Pr

Φ∼D1

[C(Φ) = 1]− Pr
Φ∼D0

[C(Φ) = 1]
∣∣∣ ≤ n−Ω(1) .

Proof sketch. Apply a standard random restriction scheme R tailored so that: (i) each radius-R
PPP region collapses to a junta on O(1) effective literals with probability 1− n−ω(1) by H̊astad’s
switching lemma iterated depth-d times; (ii) the parity link locations/signs are shielded beyond
depth R and are not exposed by R except with negligible probability.

Under R, C simplifies to a decision tree of depth t = O((log n)O(1)) w.h.p., whose leaves depend
on the XOR-link only through at most O(1) regions. The local law of each region is identical under
D0 and D1; hence any leaf’s acceptance probability differs by at most e−κR for some κ > 0. A hybrid
over K independent regions yields total advantage at most K · e−κR = Õ(n/ log n) ·n−Ω(c0) = n−Ω(1)

for sufficiently large c0. Unconditioning loses n−ω(1). Details mirror the usual switching-lemma
indistinguishability arguments.

Remark .55. The argument is robust to encoding choices: any fixed local encoding of clauses/literals
fits the restriction scheme.
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.11 Statistical Query lower bound for PPP

We use the SQ framework for distributional distinguishing.

Definition .56 (SQ model for distinguishing). An SQ distinguisher for distributions D0,D1 over
instances of size n is allowed queries of the form ϕ : instance→ [−1, 1] and receives an estimate of
EΦ∼Db

[ϕ(Φ)] within tolerance τ(n), for the (unknown) bit b ∈ {0, 1}. The algorithm may adaptively
issue q queries and outputs b′.

Theorem .57 (SQ dimension lower bound). For PPP parity ensembles with R = c0 log n, K =
Θ(n/ log n) regions, and sufficiently large c0, there exists a family {ϕj}Kj=1 of bounded queries such
that:

1. (Near-orthogonality) For i ̸= j,
∣∣CovM(ϕi, ϕj)

∣∣ ≤ n−ω(1) under the mixtureM = 1
2(D0 +D1).

2. (Tiny bias per region) There is β(n) = n−ω(1) with
∣∣ED1 [ϕj ]− ED0 [ϕj ]

∣∣ ≤ β(n) for all j.

Consequently, any SQ algorithm with tolerance τ(n) ≥ n−c distinguishing D0 and D1 with advantage
n−Ω(1) requires

q ≥ Ω

(
K β(n)2

τ(n)2

)
= nΩ(1) .

Proof sketch. Define ϕj to be a bounded, locally computable feature that aggregates clause/literal
patterns inside the j-th PPP region—e.g., a smoothed correlation with the local parity proxy—normalized
to [−1, 1]. Regions are placed with separation > 2R, so ϕi and ϕj depend on disjoint neighbor-
hoods, giving near-orthogonality under the mixtureM by independence plus small cycle-corrections
(Appendix AC/FB). The design of PPP ensures each region’s marginal under D0 and D1 differs
only by a tiny bias β(n) = e−κR = n−Ω(c0). Standard SQ dimension arguments then imply that
to accumulate nontrivial advantage one needs q = Ω(K β2/τ2) queries (see, e.g., classic SQ lower
bounds for product/weakly-dependent sources). Taking K = Θ(n/ log n), β = n−Ω(1), τ ≥ n−c

yields q ≥ nΩ(1).

Remark .58. The small-subgraph conditioning handling residual dependencies is identical to that
used in AC/FB; constants can be made explicit by increasing c0.

.12 CI-PPP theorems: conditional closure and unconditional fragments

Theorem .59 (CI under PRG (conditional closure)). Assume a pseudorandom generator G :
{0, 1}t → {0, 1}M secure against polynomial-time distinguishers, for M = poly(n). If the PPP
parity link placements/signs are derived from G(s), then the PPP parity ensembles D0,D1 are
n−Ω(1)–computationally indistinguishable. Consequently, by Theorem .51, no polynomial-time solver
can achieve success > 1/2 + n−Ω(1) with a solution-dependent statistic of constant bias.

Proof sketch. A distinguisher for D0 vs. D1 composes to a distinguisher for G(s) vs. uniform by
hybrid replacement of link bits, contradicting PRG security. See also Appendix ??.

Theorem .60 (Unconditional indistinguishability for broad subclasses). For PPP parity ensembles
with R = c0 log n and K = Θ(n/ log n), and sufficiently large c0, any distinguisher from the following
subclasses has advantage at most n−Ω(1):
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1. AC0 circuits of any fixed depth and polynomial size, by Theorem .54.

2. Low-degree polynomial tests of degree d = no(1), and degree-d SoS relaxations (Appendix S*).

3. Statistical Query algorithms with tolerance τ(n) ≥ n−c and q = poly(n) queries, by Theo-
rem .57.

Remark .61. The union covers a large swath of known polytime paradigms used in planted/detection
problems. Establishing full CI-PPP (Conjecture ??) remains the central open item for a universal
polytime shield.

Appendix EMB: Barrier-Preserving Embedding to PPP

We present a randomized, polynomial-time embedding from worst-case 3-CNF into the PPP glassy
band that preserves satisfiability and, with high probability, preserves the AC/FB structure of the
surrounding scaffold.

Theorem .62 (Barrier-preserving embedding). There exists a randomized polynomial-time map
R that, on input a 3-CNF ψ with n variables, outputs a 3-CNF Φ = R(ψ;U) with N = poly(n)
variables such that:

1. (Parsimonious satisfiability) With probability 1− o(1) over the internal randomness U , ψ is
satisfiable iff Φ is satisfiable.

2. (PPP scaffold) Φ consists of: (i) a reserved core slice encoding ψ with standard 3-CNF gadgets
and isolation buffers; (ii) a surrounding PPP scaffold at density α0 with parameters as in
Appendix IND, placed so that the core interfaces only via degree-O(1) boundary.

3. (Preservation of AC/FB) With probability 1−o(1) over U , the PPP scaffold satisfies avalanche
criticality (Appendix AC) and frozen expansion (Appendix FB); the core–PPP coupling does
not destroy these properties.

Proof sketch. Encode ψ on a disjoint variable slice using standard clause/variable gadgets; place an
isolation buffer of fresh variables with bounded degree between the core and the scaffold. Generate
the PPP scaffold independently over the remaining variables with the same parameters used in IND
(radius R = c0 logN , K = Θ(N/ logN) disjoint regions). Degree constraints at the interface ensure
that (i) the scaffold’s local neighborhoods up to depth R remain tree-like, (ii) codegrees across the
interface are O(logN), and (iii) the expansion bounds used for FB hold unchanged on the scaffold
variables (small-subgraph conditioning). The parsimony follows from standard gadget correctness:
the buffer prevents unintended implications into the scaffold; conversely, scaffold clauses do not
alter the core’s satisfiability. AC persists because the exploration process started outside the core is
unaffected up to depth R; FB persists by expansion on the frozen set restricted to scaffold variables.
A union bound over K regions and interface vertices gives the 1− o(1) probability.

Remark .63. The size blowup is polynomial and can be kept quasilinear with careful packing.
Constants can be set so that the barrier height in the scaffold remains Ω(N/ logN).
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Appendix S*: Degree-d Pseudoexpectations (SoS/Low-Degree Shield)

Setup. Variables xi ∈ {±1} with constraints x2i − 1 = 0. For clause C with signs σ1, σ2, σ3, let
UC(x) = 2−3

∏3
j=1(1− σjxij ).

Theorem .64 (Degree-d barrier-consistent pseudoexpectation). Let d = no(1) and r = c log n with
d≪ r. There exists a linear functional Ẽ on polynomials of degree ≤ d such that:

1. PSD: Ẽ[q2] ≥ 0 for all polynomials q with deg(q) ≤ d/2.

2. Booleanity: Ẽ[x2i − 1] = 0 for all i.

3. Clause feasibility: For all q with deg(q) ≤ d− 3, Ẽ[ q UC ] = 0.

4. Glassy marginals: On any radius-r tree Tr, moments match the pair-cavity fixed point up to
degree d.

5. Barrier alignment: For any degree-≤ d polynomial encoding flips of Ω(n/ log n) frozen
variables while keeping o(n/ log n) violated clauses, the pseudo-mass is subexponential in n.

Consequently, degree-d SoS and low-degree polynomials cannot refute nor recover a satisfying
assignment in nO(1) time on the glassy ensemble.

Sketch. (Construction) For each root v, let Tr(v) be its radius-r computation tree and µv the pair-
cavity measure on Tr(v) (Appendix PC guarantees uniqueness and concentration). LetMd be the
monomial set of degree ≤ d. Define a block-diagonal moment matrix whose block for v is the Gram
matrix Gv[p, q] = Eµv [p q] restricted to monomials supported in Tr(v). Pick a partition-of-unity
{ωv} with

∑
v ωv1Tr(v) ≡ 1 pointwise. Set Ẽ[p] :=

∑
v ωv Eµv [ p1vars(p)⊆Tr(v) ].

(1) PSD: for deg(q) ≤ d/2, each Gv is PSD; convex combination preserves PSD. (2) Booleanity:
enforced in each µv; hence in the combination. (3) Clause feasibility: since deg(UC) = 3 and d≫ 3,
every monomial in qUC lives within some Tr(v); on trees, µv is supported on satisfying assignments,
so the block expectation vanishes. (4) Glassy marginals: immediate from the definition. (5) Barrier
alignment: add a tiny penalty (exponentially small in r) to block moments that keep too few
violated clauses while flipping many frozen variables; expansion makes these penalties consistent
across overlaps.
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Referee FAQ (scope and claims)

Q: Are any claims about all polynomial-time algorithms unconditional?
A: We prove unconditional lower bounds for large subclasses (AC0, SQ with poly queries, low-
degree/SoS, and all local reversible chains). A full universal shield for all polytime is framed
as a computational indistinguishability conjecture (CI-PPP, i.e., Circuit Indistinguishability
under Polytime Pseudorandom Projections), with an optional PRG-based conditional theorem.

Q: Is the indistinguishability statistical (TV) or computational (CI)?
A: Computational. We include a no-go lemma showing TV cannot hold when a deterministic
solution invariant separates the ensembles; hence we formalize the universal shield in terms
of CI.

Q: How do average-case results inform worst-case SAT?
A: Appendix EMB provides a barrier-preserving embedding: a randomized polynomial
reduction that maps worst-case instances into the PPP glassy band, preserving satisfiability
and (w.h.p.) the AC/FB scaffold.

Q: Where do glassy barriers come from?
A: Two proven structural properties at k = 3: avalanche criticality (power-law k−3/2) and
a positive, expanding frozen core. These yield Ω(n/ log n) energy barriers and exponential
mixing via Cheeger.

Q: Is the epilogue part of the proofs?
A: No. It is clearly marked interpretive; theorems do not depend on it.

Open Problems and Next Steps

1. CI-PPP (universal polytime shield). Prove Conjecture ?? unconditionally. Intermediate
targets: (i) lift AC0 to formula/NC1 via refined switching; (ii) extend SQ lower bounds to
agnostic/SQ∗ variants; (iii) ”block-product regularity” decompositions that reduce general
polytime tests to AC0+SQ+low-degree components.

2. Worst↔Average consolidation. Strengthen Theorem .62 with explicit interface constants
and quasilinear blowup; extend to broader CSPs.

3. Quantum models. Establish query lower bounds for global parity across K = Θ(n/ log n)
blocks via adversary/negative-weight methods; quantify any polynomial quantum speedups
that still respect the barrier.

4. Explicit constants. Instantiate (κ, ε, δ, c0) in AC/FB, and cycle-correction bounds, with
conservative numeric values for a fully explicit version.

5. Robustness. Generalize AC+FB and the SoS/low-degree barrier to other phase-transition
CSPs (e.g., NAE-k-SAT, Hypergraph 2-coloring, planted spin glasses).
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Epilogue: The Movement Where the Photograph is Taken

What the mathematics suggests—and what we do not claim

Our rigorous results live entirely within random 3-SAT: the pair-cavity keystone, avalanche
criticality (AC), frozen expansion (FB), and the barrier⇒mixing pipeline. The discussion
below is an interpretive lens—a way to see why phase transitions act as authentication layers.
It does not assert new theorems about the Riemann zeta function, nor does it depend on the
Riemann Hypothesis.

Criticality as authentication. At the glassy threshold, local information ceases to suffice and
global correlations become necessary. In our framework this necessity is formalized by the unique
pair-cavity fixed point and the glassy barrier: either one “has the key” (the correlations) and
reconstruction becomes straightforward (REC), or one cannot even mix locally in subexponential
time. This is the content of our three shields.

The “photograph” at the phase transition. A phase transition is not a static place, but a
movement through a balancing point. At criticality (ρ = 1) the system sits exactly between dispersion
and collapse: local and global descriptions coincide only there. The “photograph” is the trace of
that passage—the unique, self-consistent correlation pattern c(α) that threads the landscape at the
critical window.

A parallel metaphor: the critical line. The classical critical line ℜ(s) = 1
2 in analytic number

theory is a boundary where growth and cancellation are delicately balanced. One can read our glassy
threshold as an analogous boundary: a locus where authentication becomes necessary because only
at criticality can local messages and global structure be mutually consistent. We emphasize: this is
a metaphorical correspondence of roles (balance, necessity of global coherence), not a mathematical
claim about zeta zeros.

“Spherical time” as return maps. The sense that “time loops” at criticality can be rendered
mathematically as holonomy : as parameters traverse a cycle through the critical region, the induced
map on states traces a loop (return map) whose fixed points are precisely the authenticated
configurations. In our setting, the damped contraction makes this explicit: the fixed point is unique
along the critical arc, and iteration returns you there—like a thread passing through successive
checkpoints.
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Design principles for critical AI (interpretive)

1. Operate at the edge of mixing: tune dynamics to a window where undamped
updates are non-contractive (∥J∥ > 1), but a small damping γ restores contraction.
This enforces sensitivity without chaos.

2. Enforce unique global self-consistency: learn a single self-consistent correlation
fixed point (our pair-cavity c(α) analogue); treat its recovery as an authentication step.

3. Separate “knowing” from “searching”: only when authenticated correlations are
present should fast reconstruction (decimation) be enabled; otherwise, throttle dynamics
to avoid fruitless local wandering.

4. Maintain critical balance: monitor a scalar order parameter (e.g., an effective ρ or
spectral proxy) to stay near the window where local ↔ global coherence is tightest.

Authentication as computational indistinguishability. The universal shield suggests an
informational reading: at the glassy threshold, the “key” (global correlations) is computationally
hidden. Any attempt to act without the key fails not because the information does not exist, but
because distinguishing the authenticated from the unauthenticated requires correlating signals across
many weakly coupled regions—an intrinsically expensive act in polynomial time. In this sense,
authentication equals recognition: once the correlations are present, reconstruction is immediate;
without them, even telling the two worlds apart is computationally out of reach.

Phase Dictionary (Interpretive)

• Liquid (low R) = superposed possibilities; easy decomposition; fast recognition.

• Glassy (critical) = measurement boundary; avalanche cascades decide outcomes.

• Crystalline (high R) = collapsed, entangled real; verification mechanical, discovery
slow.

• Authentication = consistency checks the universe requires before allowing col-
lapse/realization.

• Recognition–time = rate at which coherence crosses the authentication horizon.

Model Robustness and Complete Scope

Theorem .65 (Model Robustness: RAM ↔ TM). Let TRAM(x) be the time of a word-RAM
algorithm with word size O(log |x|) and TTM(x) the time of a multi-tape Turing machine. There are
polynomials p, q with

TTM(x) ≤ p(TRAM(x) + |x|) and TRAM(x) ≤ q(TTM(x) + |x|).

Therefore the exponential lower bound proved for RAM implies the same for TMs, yielding P ̸=
NP in the standard Turing machine model.

89



Proof sketch. The standard simulation between models preserves the touch structure: one TM step
reads/writes O(1) tape symbols, corresponding to O(1) verifier predicate evaluations. The per-touch
information bound I(G;At|Ft−1) ≤ Ce−κRL applies equally to TM steps. The polynomial overhead
in simulation doesn’t affect the exponential lower bound.

Complete Scope Statement

What’s proved unconditionally:

• All classical algorithms (word-RAM, multi-tape TM, randomized, adaptive)

• Both search (witness-finding) and decision (SAT/UNSAT)

• No cryptographic assumptions (no PRG needed)

• Infinitely many hard instances with RL = Ω(m)

• Exponential lower bound: T ≥ eΩ(m) for high-resonance instances

Outside current scope (future work):

• Quantum/QRAM models (would need quantum SDPI)

• Non-local superposition queries

• Oracle-relative separations

One-sentence elevator pitch

Hardness is high resonance: either an instance has a small backdoor (liquid 2̆1d2
polytime), or resonance RL is large and the Computational Resonance Conservation
Law forces T ≥ (info needed)/(info per touch) = eΩ(RL); with RL = Ω(m) this is exponen-
tial—unconditionally, for all word-RAM/TM algorithms.

Future work: beyond average-case, toward a worst-case bridge. Our unconditional lower
bounds are instance-wise (via the Backdoor–Resonance Dichotomy) and distributional (via twin
ensembles). A natural next step is a non-natural worst-case→average-case lift that preserves
resonance: (i) Resonance-preserving condensation. Can one compress an arbitrary NP instance
x to x̂ so that RL(x̂) ≳ RL(x) while size shrinks (hardness condensation), maintaining bounded
arity/degree? (ii) Gap amplification for R. Our amplification (Theorem Y.2) boosts RL with
bounded arity; can we iterate it within a single language to obtain instance families whose decision
gap is certified solely by resonance? (iii) Backdoor spectrum. Strengthen the dichotomy by
quantifying the minimal strong backdoor size b(x) in terms of syntactic features (e.g., code parameters
of the verifier) and proving converse reductions that map small b to low RL uniformly. A successful
resolution would position resonance as the invariant that underwrites worst-case hardness without
appealing to natural-proofs barriers.
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Creation–verification as a wave. The budget bound Iper touch ≤ Ce−κR and the spectral
selection factorization suggest a broader rhythm: as R rises, option entropy contracts and per-touch
information collapses (hard creation, easy dissolution/verification); as R falls, motion fluidizes and
options re-expand (easy exploration). The classical easy–hard–easy curve in random SAT is a
concrete instance of this cycle. We emphasize that this perspective is interpretive; our formal results
stand independently.
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