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Scope and Claims

Unconditional. We define the mirror functional Eσ,Λ,y(T ) and prove its exact residue
expansion converges absolutely via Gaussian decay (Lemma 2.3).
Conditional (RH). We prove the equivalence: RH holds if and only if Eσ,Λ,y(T ) = o(T 1/2−σ)
uniformly for y in any compact subinterval of a bounded interval.
Not claimed. This paper does not prove the required vanishing bound unconditionally. The
companion paper establishes this via coprime-diagonal methods.

Parameter audit. Fix once: σ ∈ (12 , 1), Gaussian scale Λ > 0, tilt parameter y ∈ R, scale
parameter T ≥ 2. The mirror weight WΛ,y(s) = exp((s− 1

2)
2/Λ2) · exp(y(s− 1

2)) ensures |WΛ,y(σ +

it)| ≪ e−t2/Λ2
on verticals. At zeros ρ = β + iγ, |WΛ,y(ρ)| ≪ e−γ2/Λ2

(bounded uniformly in
β ∈ [0, 1]). All sums over zeros use symmetric height truncation |γ| ≤ U with U → ∞.

Parameter Table

T height parameter (tends to ∞)
σ fixed in (12 , 1) (later σ ∈ [12 + κ, 1− κ])
Λ Gaussian scale in the s-plane (fixed, large enough)
y tilt parameter for the mirror test (y in a fixed bounded interval)
WΛ,y(s) even-in-s− 1

2 Gaussian with tilt (Remark 1.2)

Zeros and residues. Since all trivial zeros of ζ lie at negative even integers, they are strictly to
the left of ℜs = 0. For σ ∈ (12 , 1) the vertical lines ℜs = σ and ℜs = 1− σ therefore enclose only
the nontrivial zeros. Moreover,∣∣∣WΛ,y(σ + it)

∣∣∣ = exp
(
(σ− 1

2
)2−t2

Λ2

)
ey(σ−

1
2
),

so the Gaussian factor yields absolute convergence of the residue expansion and justifies letting any
symmetric height truncation |γ| ≤ U tend to infinity uniformly for y in any compact subinterval of
a bounded interval.

Abstract

We define a mirror functional Eσ,Λ,y(T ) with tilt and scale parameters (y,Λ) for the completed
zeta ξ(s) which, for each σ ∈ ( 12 , 1), Gaussian scale Λ > 0, and tilt y ∈ R, expands as

Eσ,Λ,y(T ) =
∑
ρ

m(ρ)
[
WΛ,y(ρ)T

β− 1
2 −WΛ,−y(ρ)T

1
2−β

]
+ Oσ,Λ(T

−A)
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where the sum runs over nontrivial zeros ρ = β + iγ of ζ, m(ρ) is the multiplicity, and WΛ,y is
an entire, nonvanishing weight satisfying WΛ,y(1− s) = WΛ,−y(s). We prove:

(i) If the Riemann Hypothesis holds, then Eσ,Λ,y(T ) ≡ 0 for all σ ∈ ( 12 , 1), Λ > 0, y ∈ R, and
T ≥ 2.

(ii) Conversely, if for some fixed σ ∈ ( 12 , 1) and Λ > 0 there exists a nonempty open interval
I ⊂ R such that

∀ y ∈ I : Eσ,Λ,y(T ) = o
(
T

1
2−σ

)
(T → ∞),

then all nontrivial zeros of ζ lie on the critical line ℜs = 1
2 .

Thus uniform echo–silence across mirrors (in one real tilt parameter) is equivalent to RH.
The argument uses only classical complex analysis (functional equation for ξ, Stirling on vertical
lines, contour shifts, residues).

1 Introduction

Let
ξ(s) = 1

2s(s− 1)π−s/2Γ
(
s
2

)
ζ(s),

so ξ is entire of order 1, satisfies the functional equation ξ(s) = ξ(1− s), and its zeros coincide with
the nontrivial zeros of ζ (the factor s(s− 1) absorbs 0 and 1). Write J(s) := 1− s.

The principle is simple: any zero ρ = β + iγ off the critical line produces a detectable imbalance
between the mirror lines ℜs = σ and ℜs = 1−σ in the monomials T β−σ versus T 1−β−σ. A Gaussian
weight ensures uniform decay on verticals, while a real tilt y eliminates accidental cancellation of
finitely many equal-exponent terms through a short exponential-sum argument.

Main result

Theorem 1.1 (Echo–Silence ⇐⇒ RH). Fix Λ > 0 and define

Eσ,Λ,y(T ) =
1

2πi

(∫
ℜs=σ

−
∫
ℜs=1−σ

)
ξ′

ξ
(s)T s− 1

2 WΛ,y(s) ds, WΛ,y(s) := exp
((s− 1

2)
2

Λ2

)
e y(s− 1

2
).

Convention. If a zero of ξ(s) lies on a boundary line, the contour is indented by a tiny semicircle
to avoid the singularity. The contribution of such indentations vanishes by the vertical Gaussian
bounds (see Lemma 2.1).

Remark 1.2 (Weight symmetry). Since (1− s− 1
2)

2 = (s− 1
2)

2, we have

WΛ,y(1− s) = e−y(s− 1
2
) e(s−

1
2
)2/Λ2

, hence WΛ,−y(1− s) = WΛ,y(s).

We will use this identity when comparing the mirror integrals on ℜs = σ and ℜs = 1− σ.

The following are equivalent:

(i) The Riemann Hypothesis holds.

(ii) For every σ ∈ (12 , 1) there exists a nonempty open interval Iσ ⊂ R such that

Eσ,Λ,y(T ) = o
(
T

1
2−σ) as T → ∞,

uniformly for y ∈ Iσ.
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Sketch. Under RH, the open strip 1− σ < ℜs < σ contains no zeros of ξ, so the contour difference
encloses no poles and Eσ,Λ,y(T ) ≡ 0.

Conversely, suppose (ii) holds but RH fails. Let β∗ = sup{ℜρ} > 1/2. Choose σ with
1− σ < β∗ < σ. The residue expansion gives

Eσ,Λ,y(T ) = T β∗− 1
2F (y) + o

(
T β∗− 1

2
)
,

where F (y) is a nontrivial exponential polynomial in y built from zeros with real part β∗. Since

β∗ − 1
2 > 1

2 − σ, the uniform o(T
1
2−σ) contradicts this unless F ≡ 0, impossible. Hence RH holds.

Remark 1.3 (Why the parameters). The Gaussian delivers rapid decay on verticals, uniform
in T ; the tilt ey(s−1/2) is entire and yields Fourier weights eiyγ on ordinates γ, letting us rule
out accidental linear cancellation on the leading front by varying y over an open interval. Note
WΛ,y(1− s) = WΛ,−y(s).

2 Preliminaries and vertical bounds

We use standard facts (see Titchmarsh–Heath-Brown or Iwaniec–Kowalski).

Lemma 2.1 (Bounds on vertical lines). Fix σ ∈ (0, 1). For |t| ≥ 2,

ξ′

ξ
(σ + it) ≪ log(|t|+ 2).

The weight bound follows immediately from the Gaussian decay of WΛ,y.

Proof. From ξ(s) = 1
2s(s− 1)π−s/2Γ(s/2)ζ(s), Stirling gives d

ds log Γ(s/2) ≪ log(|t|+ 2), while ζ ′/ζ
is ≪ log(|t|+ 2) away from s = 1; combine. The weight bound follows from the Gaussian factor in
WΛ,y.

Lemma 2.2 (Poles and residues). If ρ is a zero of ζ of multiplicity m(ρ), then Ress=ρ
ξ′

ξ (s) = m(ρ).
The same holds at 1− ρ by the functional equation.

Lemma 2.3 (Absolute convergence of the residue expansion). For fixed Λ > 0 and |y| ≤ Y ,∑
ρ

|WΛ,y(ρ)| < ∞,

hence (3) converges absolutely and locally uniformly in (T, y).

Proof. At ρ = β+ iγ, we have |WΛ,y(ρ)| = exp((β− 1
2)

2/Λ2−γ2/Λ2) · ey(β−
1
2
) ≤ e1/(4Λ

2)eY/2e−γ2/Λ2
.

Group zeros by k < |γ| ≤ k + 1; with N(k + 1)−N(k) ≪ log k, we get

∑
ρ

|WΛ,y(ρ)| ≪
∞∑
k=1

(log k) e−k2/Λ2
< ∞.

Convergence. The Gaussian vertical decay of WΛ,y yields
∑

ρ |WΛ,y(ρ)| < ∞ uniformly for y in
compact sets, so all rearrangements are justified without appealing to zero-density estimates.
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Summation convention over zeros. Every sum
∑

ρ over nontrivial zeros is defined as the
limit of symmetric height truncations:∑

ρ

A(ρ) := lim
U→∞

∑
ρ=β+iγ
|γ|≤U

A(ρ),

whenever the limit exists. In our setting, the limit exists because the contour integrals in (1)
converge absolutely on the vertical lines (Lemma 2.1), the horizontal edges vanish as U → ∞, and
the residue theorem equates the truncated sum to the difference of the two vertical integrals
up to an error o(1) which tends to 0 as U → ∞. All uniformity in y (on compact intervals) is
derived from the integral bounds.

Boundary zeros. If a zero lies on ℜs = σ or ℜs = 1− σ, we use an indentation or principal
value; the residue contribution is then half-weighted in the usual way. This has no effect on the
asymptotics and will be omitted from notation.

3 Contour architecture and exact residue expansion

Let U ≥ 2. Consider the rectangle RU with vertical edges ℜs = σ and ℜs = 1− σ and horizontal
edges ℑs = ±U . Define

F (s) :=
ξ′

ξ
(s)T s− 1

2 WΛ,y(s).

By Lemma 2.1, |F (σ + it)| ≪ e−(t/Λ)2 log(|t|+ 2) and similarly on ℜs = 1− σ. The contributions of
the horizontal edges are

≪
∫ σ

1−σ
e−(U/Λ)2 log(U + 2) dx ≪ e−(U/Λ)2 log(U + 2),

hence vanish as U → ∞. Thus by Cauchy’s theorem,

Eσ,Λ,y(T ) =
1

2πi

∫
∂RU

F (s) ds (1)

=
∑
ρ∈ZU

Ress=ρ F (s),

where ZU are the zeros of ξ in the strip 1− σ < ℜs < σ, |ℑs| < U .

Each residue equals m(ρ)T ρ− 1
2WΛ,y(ρ) by Lemma 2.2. Passing U → ∞ (dominated convergence

holds by Lemma 2.1), we obtain an exact expansion:

Eσ,Λ,y(T ) =
∑
ρ

m(ρ)T ρ− 1
2 WΛ,y(ρ), (2)

where the sum runs over all nontrivial zeros ρ with 1− σ < ℜρ < σ.

Proposition 3.1 (Global mirror expansion). For σ ∈ (12 , 1), Λ > 0, T ≥ 2 and any y ∈ R,

Eσ,Λ,y(T ) =
∑
ρ

m(ρ)
(
T ρ−1

2 WΛ,y(ρ) − T
1
2−ρWΛ,−y(ρ)

)
, (3)

where the sum is over all nontrivial zeros ρ of ζ. The series converges absolutely and locally uniformly
in (T, y).
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Proof sketch. Starting from (1), change variables s 7→ 1− s in the second integral and use ξ(1− s) =

ξ(s) and ξ′

ξ (1− s) = − ξ′

ξ (s) to obtain

Eσ,Λ,y(T ) =
1

2πi

∫
ℜs=σ

ξ′

ξ
(s)
(
T s− 1

2WΛ,y(s)− T
1
2
−sWΛ,y(1− s)

)
ds.

By the weight symmetry WΛ,y(1− s) = WΛ,−y(s) this is

1

2πi

∫
ℜs=σ

ξ′

ξ
(s)
(
T s− 1

2WΛ,y(s)− T
1
2
−sWΛ,−y(s)

)
ds.

Both terms have Gaussian decay on vertical lines (Lemma 2.1), so we may shift the line and apply
the residue theorem. Each zero ρ contributes

Ress=ρ
ξ′

ξ
(s)
(
T s− 1

2WΛ,y(s)− T
1
2
−sWΛ,−y(s)

)
= m(ρ)

(
T ρ− 1

2WΛ,y(ρ)− T
1
2
−ρWΛ,−y(ρ)

)
,

and grouping by real parts yields (3). Absolute convergence follows from Lemma 2.3 applied to
both weights and the standard zero count N(T ) ≍ T log T .

Corollary 3.2 (Phaseful y = 0 form). By pairing ρ with 1− ρ in (3), one recovers the strip form

Eσ,Λ,y(T ) =
∑

1−σ<β<σ

m(ρ)T ρ− 1
2 WΛ,y(ρ),

and when y = 0,

Eσ,Λ,0(T ) = T σ−1
2
∑
ρ

m(ρ)WΛ,0(ρ)
(
T β−σeiγ log T − T 1−β−σe−iγ log T

)
.

Pairing conjugate zeros yields a real trigonometric form.

Remark 3.3 (Why the −y appears). The second term in (3) necessarily carries WΛ,−y because
the change of variables s 7→ 1− s flips the tilt: WΛ,y(1− s) = WΛ,−y(s). In the converse direction

(Section 5), only the first term contributes to the dominant exponent T β
−
1
2 when β=supℜρ>1/2, so

the −y never affects the leading coefficient FΛ,U (y) used in the exponential-polynomial argument.

Remark 3.4 (Remainder term). If one prefers to shift just the ℜs = σ line to +∞ and ℜs = 1− σ
to −∞, one obtains (3) with an exponentially small Oσ,Λ(T

−A) remainder coming from the tails;
we may harmlessly record this as an O(T−A) term in all that follows.

4 RH ⇒ echo–silence

Proposition 4.1 (RH ⇒ echo–silence). Fix σ ∈ (1/2, 1) and y ∈ R. Assuming RH, the open strip
1− σ < ℜs < σ contains no zeros of ζ, hence

Eσ,Λ,y(T ) ≡ 0 for all T ≥ 2.

Proof. Under RH there are no poles of ξ′/ξ in 1 − σ < ℜs < σ. The difference of the two
vertical integrals is a closed contour integral enclosing no poles; horizontal segments vanish by the
superpolynomial vertical decay of WΛ,y, so Cauchy’s theorem gives 0.
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5 Echo–silence on a tilt interval ⇒ RH

Theorem 5.1 (Asymptotics from an off-line zero). Fix σ ∈ (1/2, 1) and U ≥ 1. Suppose RH fails
and let

β∗ = sup{ℜρ : ζ(ρ) = 0} > 1/2.

Then for any σ with 1− σ < β∗ < σ,

Eσ,Λ,y(T ) = T β∗− 1
2 FΛ,U (y) + o

(
T β∗− 1

2
)

(T → ∞),

uniformly for y in compact sets, where

FΛ,U (y) :=
∑

ρ: ℜρ=β∗

|ℑρ|≤U

m(ρ)WΛ,y(ρ) = ey(β
∗−1

2 )
∑

ρ: ℜρ=β∗

|ℑρ|≤U

m(ρ) exp
((ρ− 1

2)
2

Λ2

)
eiyℑρ

is a nontrivial exponential polynomial in y (after fixing U).

Proof sketch. From the phaseful global mirror expansion

Eσ,Λ,y(T ) =
∑
ρ

m(ρ)
(
T ρ−1

2WΛ,y(ρ)− T
1
2−ρWΛ,−y(ρ)

)
,

the terms with ℜρ = β∗ dominate, contributing T β∗− 1
2 up to phases e±i(ℑρ) log T . Truncating

|ℑρ| ≤ U produces FΛ,U (y); the tail is o(1) by the Gaussian vertical decay and standard zero
counting. Nontriviality holds because WΛ,· is entire, nonvanishing and the residue of ξ′/ξ at ρ is
1.

Lemma 5.2 (Exponential polynomial in y). For fixed U ≥ 1, the function FΛ,U (y) in Theorem 5.1

is a finite sum
∑J

j=1 cje
iγjy with distinct real γj and nonzero coefficients cj depending on WΛ,·(ρj).

Remark 5.3 (Multiplicity and coincident ordinates). If several zeros share the same ordinate γ,
their coefficients aggregate in the corresponding exponential term. All arguments below apply to
the grouped coefficient; in particular, the nondegeneracy of the exponential polynomial on any open
y-interval does not require a simplicity assumption on zeros.

Assume RH fails; let

β:=sup{ℜρ: ζ(ρ)=0}>1
2 .

Let Z :={ρ:ℜρ=β,|ℑρ|≤U}

U (finite for each U). From the global mirror expansion (3), when β>
1
2 , the

dominant contribution comes from zeros with ℜρ = β in the first term (the second term with WΛ,−y

contributes only O(T−(β+σ−1))). Thus

Eσ,Λ,y(T ) = lim
U→∞

[
T

β
−
1
2
∑

ρ∈Z
U
m(ρ)WΛ,y(ρ) +

∑
β<β
|γ|≤U

m(ρ)WΛ,y(ρ)T
β−

1
2 −

∑
|γ|≤U m(ρ)WΛ,−y(ρ)T

1
2−β

]
.(4)

the last sum contributes o(T β
−
1
2 ) since 1

2 −β<0. Likewise the middle sum is o(T β
−
1
2 ) because β < β .

For each U , define the height-truncated leading coefficient

FΛ,U (y) :=
∑

ρ∈ZUm(ρ)WΛ,y(ρ)=e

y(β
− 1

2 ) ∑
ρ∈Z

U
m(ρ) exp

(
(ρ− 1

2 )2

Λ2

)
eiyγ.(5)
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Then for each fixed U ,

Eσ,Λ,y(T ) = T β
−
1
2 FΛ,U (y)+o

(
T

β
−
1
2
)
+OU (1), (T→∞),(6)

uniformly for y in any compact subinterval of a bounded interval.

Lemma 5.4 (Exponential-sum nondegeneracy). If FΛ,U (y) = 0 for all y in a nonempty open
interval I ⊂ R and all U > 0, then Z=∅.

Proof. For each fixed U , write aρ := m(ρ) exp(((ρ− 1
2)

2)/Λ2) and ρ = β+iγ . Then

FΛ,U (y) = e
y(β− 1

2 ) ∑
ρ∈Z

U
aρ eiyγ.

The prefactor never vanishes. An exponential polynomial
∑

aρe
iyγ that vanishes on an interval

must be identically zero; thus each coefficient aρ = 0 for all ρ ∈ ZU . Since this holds for all U and
m(ρ) ≥ 1, we have Z=∅.

Converse direction of Theorem 1.1. Suppose Eσ,Λ,y(T ) = o(T
1
2
−σ) for all y ∈ I. If β>1/2, then for

each fixed U , dividing (6) by T β
−
1
2 gives

Eσ,Λ,y(T )

T β
−
1
2 = FΛ,U (y) + o(1) +OU (T−(β

−
1
2 )).

Since β−1
2>

1
2−σ (equivalently 1− σ − β<0), the assumed bound forces FΛ,U (y) ≡ 0 on I for each U .

By Lemma 5.4, Z=∅, contradicting β>1/2. Hence β=
1
2 and RH holds.

Corollary 5.5 (Open-interval echo–silence forces RH). Assume that for every σ ∈ (1/2, 1) there
exists a nonempty open interval Iσ ⊂ R such that

Eσ,Λ,y(T ) = o
(
T

1
2
−σ
)

uniformly for y ∈ Iσ.

Then RH holds.

Proof. If β∗ > 1/2, choose σ with 1− σ < β∗ < σ. By Theorem 5.1, Eσ,Λ,y(T ) = T β∗− 1
2FΛ,U (y) +

o(T β∗− 1
2 ) with a nontrivial exponential polynomial FΛ,U , contradicting o(T

1
2
−σ) on any open Iσ

(since β∗ − 1
2 > 0 while 1

2 − σ < 0). Hence β∗ = 1/2.

6 Equivalent formulations and robustness

Corollary 6.1 (Uniform echo–silence). RH holds iff for some (equivalently, every) σ ∈ (12 , 1) and
Λ > 0 there is a nonempty open interval I with

sup
y∈I

lim sup
T→∞

T−( 1
2
−σ)

∣∣Eσ,Λ,y(T )∣∣ = 0.

Remark 6.2 (Choice of weight). Any entire, nonvanishing, even-in-s− 1
2 factor with superpolynomial

vertical decay may replace the Gaussian; the tilt ey(s−1/2) can be replaced by any nondegenerate
one-parameter entire family Ey(s) with Ey(1− s) = E−y(s) and Ey(ρ) nontrivial in y. The proofs
are unchanged.
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7 Unconditional inputs and routes to vanishing

This paper isolates RH into the uniform vanishing of Eσ,Λ,y(T ). Any unconditional method proving

Eσ,Λ,y(T ) = o
(
T

1
2−σ) as T → ∞,

for y in some interval yields RH by the converse direction of Theorem 1.1. Candidate routes (all
independent of the specific choice of WΛ,y):

• Mean-value bounds for ξ′/ξ with Gaussian weight (vertical large-sieve style).

• Dispersion/energy inequalities for coprime-filtered moments, converting off-diagonal control
into echo-silence.

• Positivity methods: represent E as
∫
|Gσ(s)|2 dµT with a positive measure dµT and show

o(T
1
2−σ).

8 Final assembly

Unconditional results.

• The mirror functional Eσ,Λ,y(T ) admits an absolutely convergent residue expansion (Theo-
rem 1.1, Lemma 2.3)

• The expansion isolates the asymmetry from off-line zeros via the factor (T β−1
2 − T

1
2−β)

• Exponential-sum nondegeneracy prevents accidental cancellation (Lemma 5.4)

Conditional results (assuming RH).

• If RH holds, then Eσ,Λ,y(T ) ≡ 0 for all T ≥ 2 (Proposition 4.1)

• The converse requires only vanishing on an open interval in y (converse direction of Theorem 1.1)

• Thus RH ⇔ uniform echo-silence across mirrors

Barriers and limits. This equivalence does not constitute a proof of RH. The required vanishing
bound Eσ,Λ,y(T ) = o(T 1/2−σ) must be established by independent methods. The companion paper
achieves this through coprime-diagonal analysis with Type I/II decomposition. Alternative routes
include mean-value bounds, dispersion inequalities, or positivity methods (Section 7).

Appendix (optional): Critical line as channel

After unfolding to unit mean spacing, the pair-correlation kernel suggests the sine/sinc kernel

K(x, y) =
sinπ(x− y)

π(x− y)
.

Interpreting ordinates γk as samples and defining the field Φ(t) =
∑

k K(t, γk)e
iθk gives a bandlimited

reconstruction picture; the log-derivative ζ ′/ζ spikes near zeros correspond to Fisher-information
peaks. This heuristic plays no role in Sections 3–7.
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Paper Summary: Echo–Silence on the Critical Horizon and the
Riemann Hypothesis

This paper introduces a novel approach to the Riemann Hypothesis (RH) by defining a mirror
functional Eσ,Λ,y(T ). This functional measures a quantifiable imbalance that would exist if any
non-trivial zeta zero were located off the critical line ℜs = 1

2 . The argument is built using classical
complex analysis and relies on the functional equation of the completed zeta, ξ(s) = ξ(1− s).

Summation convention: all sums
∑

ρ are taken as symmetric height truncations |ℑρ| ≤ U
and limits U → ∞ are justified by the convergence of the defining contour integrals (Gaussian
vertical decay); boundary zeros are handled by indentation.

Key Components

• Mirror Functional E: Defined as a difference of two contour integrals on mirror vertical
lines, ℜs = σ and ℜs = 1− σ. By residue calculus (with symmetric truncation) this equals a
sum over non-trivial zeros ρ = β + iγ.

• The Imbalance Term: The core factor (T β−σ − T 1−β−σ) is nonzero iff β ̸= 1
2 .

• Mirror Weight WΛ,y(s): A Gaussian factor ensures uniform decay on vertical lines, and a
tilt ey(s−1/2) (with WΛ,y(1− s) = WΛ,−y(s)) prevents accidental cancellation by separating
ordinates via an exponential polynomial in y.

Main Theorem and Its Implications

The central theorem proves a direct equivalence:

1. RH ⇒ Echo-Silence: If RH holds (β = 1
2 for all zeros), each pair cancels in the truncated

residue expansion, and the contour formulation yields Eσ,Λ,y(T ) ≡ 0 (hence also Oσ,Λ(T
−A)

for every A > 0).

2. Echo-Silence ⇒ RH: Conversely, if Eσ,Λ,y(T ) = o(T 1/2−σ) for all y in some open interval,
then an exponential-polynomial argument forces the leading off-line coefficient to vanish,
implying all zeros lie on ℜs = 1

2 .

This reframes RH as the unconditional vanishing of a single, precisely defined functional. Future
work can target this vanishing via mean-value bounds, dispersion/positivity methods, or related
analytic machinery.

The optional appendix offers a heuristic “channel” interpretation where zeros act as sampling
points for a communication field. This viewpoint is not used in the proofs.
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