Echo-Silence on the Critical Horizon and the Riemann Hypothesis

William Goodfellow

August 18, 2025

Scope and Claims

Unconditional. We define the mirror functional $\mathcal{E}_{\sigma,\Lambda,y}(T)$ and prove its exact residue expansion converges absolutely via Gaussian decay (Lemma 2.3).

Conditional (RH). We prove the equivalence: RH holds if and only if $\mathcal{E}_{\sigma,\Lambda,y}(T) = o(T^{1/2-\sigma})$ uniformly for y in any compact subinterval of a bounded interval.

Not claimed. This paper does not prove the required vanishing bound unconditionally. The companion paper establishes this via coprime-diagonal methods.

Parameter audit. Fix once: $\sigma \in (\frac{1}{2}, 1)$, Gaussian scale $\Lambda > 0$, tilt parameter $y \in \mathbb{R}$, scale parameter $T \geq 2$. The mirror weight $W_{\Lambda,y}(s) = \exp((s-\frac{1}{2})^2/\Lambda^2) \cdot \exp(y(s-\frac{1}{2}))$ ensures $|W_{\Lambda,y}(\sigma+it)| \ll e^{-t^2/\Lambda^2}$ on verticals. At zeros $\rho = \beta + i\gamma$, $|W_{\Lambda,y}(\rho)| \ll e^{-\gamma^2/\Lambda^2}$ (bounded uniformly in $\beta \in [0,1]$). All sums over zeros use symmetric height truncation $|\gamma| \leq U$ with $U \to \infty$.

Parameter Table

T height parameter (tends to ∞)

 σ fixed in $(\frac{1}{2}, 1)$ (later $\sigma \in [\frac{1}{2} + \kappa, 1 - \kappa]$)

 Λ Gaussian scale in the s-plane (fixed, large enough)

y tilt parameter for the mirror test (y in a fixed bounded interval)

 $W_{\Lambda,y}(s)$ even-in- $s-\frac{1}{2}$ Gaussian with tilt (Remark 1.2)

Zeros and residues. Since all trivial zeros of ζ lie at negative even integers, they are strictly to the left of $\Re s = 0$. For $\sigma \in (\frac{1}{2}, 1)$ the vertical lines $\Re s = \sigma$ and $\Re s = 1 - \sigma$ therefore enclose only the nontrivial zeros. Moreover,

$$\left|W_{\Lambda,y}(\sigma+it)\right| = \exp\!\left(\frac{(\sigma-\frac{1}{2})^2-t^2}{\Lambda^2}\right)e^{y(\sigma-\frac{1}{2})},$$

so the Gaussian factor yields absolute convergence of the residue expansion and justifies letting any symmetric height truncation $|\gamma| \leq U$ tend to infinity uniformly for y in any compact subinterval of a bounded interval.

Abstract

We define a mirror functional $\mathcal{E}_{\sigma,\Lambda,y}(T)$ with tilt and scale parameters (y,Λ) for the completed zeta $\xi(s)$ which, for each $\sigma \in (\frac{1}{2},1)$, Gaussian scale $\Lambda > 0$, and tilt $y \in \mathbb{R}$, expands as

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = \sum_{\rho} m(\rho) \left[W_{\Lambda,y}(\rho) T^{\beta - \frac{1}{2}} - W_{\Lambda,-y}(\rho) T^{\frac{1}{2} - \beta} \right] + O_{\sigma,\Lambda}(T^{-A})$$

where the sum runs over nontrivial zeros $\rho = \beta + i\gamma$ of ζ , $m(\rho)$ is the multiplicity, and $W_{\Lambda,y}$ is an entire, nonvanishing weight satisfying $W_{\Lambda,y}(1-s) = W_{\Lambda,-y}(s)$. We prove:

- (i) If the Riemann Hypothesis holds, then $\mathcal{E}_{\sigma,\Lambda,y}(T) \equiv 0$ for all $\sigma \in (\frac{1}{2},1)$, $\Lambda > 0$, $y \in \mathbb{R}$, and T > 2.
- (ii) Conversely, if for some fixed $\sigma \in (\frac{1}{2}, 1)$ and $\Lambda > 0$ there exists a nonempty open interval $I \subset \mathbb{R}$ such that

$$\forall y \in I: \qquad \mathcal{E}_{\sigma,\Lambda,y}(T) = o(T^{\frac{1}{2}-\sigma}) \qquad (T \to \infty),$$

then all nontrivial zeros of ζ lie on the critical line $\Re s = \frac{1}{2}.$

Thus uniform echo-silence across mirrors (in one real tilt parameter) is equivalent to RH. The argument uses only classical complex analysis (functional equation for ξ , Stirling on vertical lines, contour shifts, residues).

1 Introduction

Let

$$\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(\frac{s}{2})\zeta(s),$$

so ξ is entire of order 1, satisfies the functional equation $\xi(s) = \xi(1-s)$, and its zeros coincide with the nontrivial zeros of ζ (the factor s(s-1) absorbs 0 and 1). Write J(s) := 1-s.

The principle is simple: any zero $\rho = \beta + i\gamma$ off the critical line produces a detectable imbalance between the mirror lines $\Re s = \sigma$ and $\Re s = 1 - \sigma$ in the monomials $T^{\beta-\sigma}$ versus $T^{1-\beta-\sigma}$. A Gaussian weight ensures uniform decay on verticals, while a real *tilt* y eliminates accidental cancellation of finitely many equal-exponent terms through a short exponential-sum argument.

Main result

Theorem 1.1 (Echo–Silence \iff RH). Fix $\Lambda > 0$ and define

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = \frac{1}{2\pi i} \left(\int_{\Re s = \sigma} - \int_{\Re s = 1 - \sigma} \right) \frac{\xi'}{\xi}(s) T^{s - \frac{1}{2}} W_{\Lambda,y}(s) ds, \qquad W_{\Lambda,y}(s) := \exp\left(\frac{\left(s - \frac{1}{2}\right)^2}{\Lambda^2}\right) e^{y(s - \frac{1}{2})}.$$

Convention. If a zero of $\xi(s)$ lies on a boundary line, the contour is indented by a tiny semicircle to avoid the singularity. The contribution of such indentations vanishes by the vertical Gaussian bounds (see Lemma 2.1).

Remark 1.2 (Weight symmetry). Since $(1-s-\frac{1}{2})^2=(s-\frac{1}{2})^2$, we have

$$W_{\Lambda,y}(1-s) = e^{-y(s-\frac{1}{2})} e^{(s-\frac{1}{2})^2/\Lambda^2}, \quad \text{hence} \quad W_{\Lambda,-y}(1-s) = W_{\Lambda,y}(s).$$

We will use this identity when comparing the mirror integrals on $\Re s = \sigma$ and $\Re s = 1 - \sigma$.

The following are equivalent:

- (i) The Riemann Hypothesis holds.
- (ii) For every $\sigma \in (\frac{1}{2}, 1)$ there exists a nonempty open interval $I_{\sigma} \subset \mathbb{R}$ such that

$$\mathcal{E}_{\sigma,\Lambda,u}(T) = o(T^{\frac{1}{2}-\sigma})$$
 as $T \to \infty$,

uniformly for $y \in I_{\sigma}$.

Sketch. Under RH, the open strip $1 - \sigma < \Re s < \sigma$ contains no zeros of ξ , so the contour difference encloses no poles and $\mathcal{E}_{\sigma,\Lambda,y}(T) \equiv 0$.

Conversely, suppose (ii) holds but RH fails. Let $\beta^* = \sup\{\Re \rho\} > 1/2$. Choose σ with $1 - \sigma < \beta^* < \sigma$. The residue expansion gives

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = T^{\beta^* - \frac{1}{2}} F(y) + o(T^{\beta^* - \frac{1}{2}}),$$

where F(y) is a nontrivial exponential polynomial in y built from zeros with real part β^* . Since $\beta^* - \frac{1}{2} > \frac{1}{2} - \sigma$, the uniform $o(T^{\frac{1}{2} - \sigma})$ contradicts this unless $F \equiv 0$, impossible. Hence RH holds.

Remark 1.3 (Why the parameters). The Gaussian delivers rapid decay on verticals, uniform in T; the tilt $e^{y(s-1/2)}$ is entire and yields Fourier weights $e^{iy\gamma}$ on ordinates γ , letting us rule out accidental linear cancellation on the leading front by varying y over an open interval. Note $W_{\Lambda,y}(1-s) = W_{\Lambda,-y}(s)$.

2 Preliminaries and vertical bounds

We use standard facts (see Titchmarsh-Heath-Brown or Iwaniec-Kowalski).

Lemma 2.1 (Bounds on vertical lines). Fix $\sigma \in (0,1)$. For $|t| \geq 2$,

$$\frac{\xi'}{\xi}(\sigma + it) \ll \log(|t| + 2).$$

The weight bound follows immediately from the Gaussian decay of $W_{\Lambda,y}$.

Proof. From $\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s)$, Stirling gives $\frac{d}{ds}\log\Gamma(s/2) \ll \log(|t|+2)$, while ζ'/ζ is $\ll \log(|t|+2)$ away from s=1; combine. The weight bound follows from the Gaussian factor in $W_{\Lambda,y}$.

Lemma 2.2 (Poles and residues). If ρ is a zero of ζ of multiplicity $m(\rho)$, then $\operatorname{Res}_{s=\rho} \frac{\xi'}{\xi}(s) = m(\rho)$. The same holds at $1 - \rho$ by the functional equation.

Lemma 2.3 (Absolute convergence of the residue expansion). For fixed $\Lambda > 0$ and $|y| \leq Y$,

$$\sum_{\rho} |W_{\Lambda,y}(\rho)| < \infty,$$

hence (3) converges absolutely and locally uniformly in (T, y).

 $\begin{array}{l} \textit{Proof. } \text{At } \rho = \beta + i\gamma, \text{ we have } |W_{\Lambda,y}(\rho)| = \exp((\beta - \frac{1}{2})^2/\Lambda^2 - \gamma^2/\Lambda^2) \cdot e^{y(\beta - \frac{1}{2})} \leq e^{1/(4\Lambda^2)} e^{Y/2} e^{-\gamma^2/\Lambda^2}. \\ \text{Group zeros by } k < |\gamma| \leq k+1; \text{ with } N(k+1) - N(k) \ll \log k, \text{ we get} \end{array}$

$$\sum_{\rho} |W_{\Lambda,y}(\rho)| \ll \sum_{k=1}^{\infty} (\log k) e^{-k^2/\Lambda^2} < \infty.$$

Convergence. The Gaussian vertical decay of $W_{\Lambda,y}$ yields $\sum_{\rho} |W_{\Lambda,y}(\rho)| < \infty$ uniformly for y in compact sets, so all rearrangements are justified without appealing to zero-density estimates.

Summation convention over zeros. Every sum \sum_{ρ} over nontrivial zeros is defined as the limit of symmetric height truncations:

$$\sum_{\rho} A(\rho) := \lim_{U \to \infty} \sum_{\substack{\rho = \beta + i\gamma \\ |\gamma| \le U}} A(\rho),$$

whenever the limit exists. In our setting, the limit exists because the contour integrals in (1) converge absolutely on the vertical lines (Lemma 2.1), the horizontal edges vanish as $U \to \infty$, and the **residue theorem equates** the truncated sum to the difference of the two vertical integrals up to an error o(1) which tends to 0 as $U \to \infty$. All **uniformity in** y (on compact intervals) is derived from the **integral bounds**.

Boundary zeros. If a zero lies on $\Re s = \sigma$ or $\Re s = 1 - \sigma$, we use an indentation or principal value; the residue contribution is then half-weighted in the usual way. This has no effect on the asymptotics and will be omitted from notation.

3 Contour architecture and exact residue expansion

Let $U \geq 2$. Consider the rectangle \mathcal{R}_U with vertical edges $\Re s = \sigma$ and $\Re s = 1 - \sigma$ and horizontal edges $\Im s = \pm U$. Define

$$F(s) := \frac{\xi'}{\xi}(s) \, T^{s - \frac{1}{2}} \, W_{\Lambda, y}(s).$$

By Lemma 2.1, $|F(\sigma+it)| \ll e^{-(t/\Lambda)^2} \log(|t|+2)$ and similarly on $\Re s = 1-\sigma$. The contributions of the horizontal edges are

$$\ll \int_{1-\sigma}^{\sigma} e^{-(U/\Lambda)^2} \log(U+2) dx \ll e^{-(U/\Lambda)^2} \log(U+2),$$

hence vanish as $U \to \infty$. Thus by Cauchy's theorem,

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = \frac{1}{2\pi i} \int_{\partial \mathcal{R}_U} F(s) \, ds$$

$$= \sum_{\rho \in \mathcal{Z}_U} \operatorname{Res}_{s=\rho} F(s),$$
(1)

where \mathcal{Z}_U are the zeros of ξ in the strip $1 - \sigma < \Re s < \sigma$, $|\Im s| < U$.

Each residue equals $m(\rho) T^{\rho-\frac{1}{2}} W_{\Lambda,y}(\rho)$ by Lemma 2.2. Passing $U \to \infty$ (dominated convergence holds by Lemma 2.1), we obtain an *exact* expansion:

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = \sum_{\rho} m(\rho) T^{\rho - \frac{1}{2}} W_{\Lambda,y}(\rho), \tag{2}$$

where the sum runs over all nontrivial zeros ρ with $1 - \sigma < \Re \rho < \sigma$.

Proposition 3.1 (Global mirror expansion). For $\sigma \in (\frac{1}{2}, 1)$, $\Lambda > 0$, $T \geq 2$ and any $y \in \mathbb{R}$,

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = \sum_{\rho} m(\rho) \left(T^{\rho - \frac{1}{2}} W_{\Lambda,y}(\rho) - T^{\frac{1}{2} - \rho} W_{\Lambda,-y}(\rho) \right), \tag{3}$$

where the sum is over all nontrivial zeros ρ of ζ . The series converges absolutely and locally uniformly in (T, y).

Proof sketch. Starting from (1), change variables $s\mapsto 1-s$ in the second integral and use $\xi(1-s)=\xi(s)$ and $\frac{\xi'}{\xi}(1-s)=-\frac{\xi'}{\xi}(s)$ to obtain

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = \frac{1}{2\pi i} \int_{\Re s = \sigma} \frac{\xi'}{\xi}(s) \left(T^{s - \frac{1}{2}} W_{\Lambda,y}(s) - T^{\frac{1}{2} - s} W_{\Lambda,y}(1 - s) \right) ds.$$

By the weight symmetry $W_{\Lambda,y}(1-s) = W_{\Lambda,-y}(s)$ this is

$$\frac{1}{2\pi i} \int_{\Re s = \sigma} \frac{\xi'}{\xi}(s) \Big(T^{s - \frac{1}{2}} W_{\Lambda,y}(s) - T^{\frac{1}{2} - s} W_{\Lambda,-y}(s) \Big) \, ds.$$

Both terms have Gaussian decay on vertical lines (Lemma 2.1), so we may shift the line and apply the residue theorem. Each zero ρ contributes

$$\operatorname{Res}_{s=\rho} \frac{\xi'}{\xi}(s) \Big(T^{s-\frac{1}{2}} W_{\Lambda,y}(s) - T^{\frac{1}{2}-s} W_{\Lambda,-y}(s) \Big) = m(\rho) \Big(T^{\rho-\frac{1}{2}} W_{\Lambda,y}(\rho) - T^{\frac{1}{2}-\rho} W_{\Lambda,-y}(\rho) \Big),$$

and grouping by real parts yields (3). Absolute convergence follows from Lemma 2.3 applied to both weights and the standard zero count $N(T) \approx T \log T$.

Corollary 3.2 (Phaseful y = 0 form). By pairing ρ with $1 - \rho$ in (3), one recovers the strip form

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = \sum_{1-\sigma < \beta < \sigma} m(\rho) T^{\rho - \frac{1}{2}} W_{\Lambda,y}(\rho),$$

and when y = 0,

$$\mathcal{E}_{\sigma,\Lambda,0}(T) = T^{\sigma-\frac{1}{2}} \sum_{\rho} m(\rho) W_{\Lambda,0}(\rho) \Big(T^{\beta-\sigma} e^{i\gamma \log T} - T^{1-\beta-\sigma} e^{-i\gamma \log T} \Big).$$

Pairing conjugate zeros yields a real trigonometric form.

Remark 3.3 (Why the -y appears). The second term in (3) necessarily carries $W_{\Lambda,-y}$ because the change of variables $s \mapsto 1 - s$ flips the tilt: $W_{\Lambda,y}(1-s) = W_{\Lambda,-y}(s)$. In the converse direction (Section 5), only the first term contributes to the dominant exponent $T^{\beta^{-\frac{1}{2}}}$ when $\beta^{=\sup\Re\rho>1/2}$, so the -y never affects the leading coefficient $F_{\Lambda,U}(y)$ used in the exponential-polynomial argument.

Remark 3.4 (Remainder term). If one prefers to shift just the $\Re s = \sigma$ line to $+\infty$ and $\Re s = 1 - \sigma$ to $-\infty$, one obtains (3) with an exponentially small $O_{\sigma,\Lambda}(T^{-A})$ remainder coming from the tails; we may harmlessly record this as an $O(T^{-A})$ term in all that follows.

4 RH \Rightarrow echo-silence

Proposition 4.1 (RH \Rightarrow echo-silence). Fix $\sigma \in (1/2, 1)$ and $y \in \mathbb{R}$. Assuming RH, the open strip $1 - \sigma < \Re s < \sigma$ contains no zeros of ζ , hence

$$\mathcal{E}_{\sigma,\Lambda,y}(T) \equiv 0$$
 for all $T \geq 2$.

Proof. Under RH there are no poles of ξ'/ξ in $1-\sigma < \Re s < \sigma$. The difference of the two vertical integrals is a closed contour integral enclosing no poles; horizontal segments vanish by the superpolynomial vertical decay of $W_{\Lambda,y}$, so Cauchy's theorem gives 0.

5 Echo-silence on a tilt interval \Rightarrow RH

Theorem 5.1 (Asymptotics from an off-line zero). Fix $\sigma \in (1/2, 1)$ and $U \ge 1$. Suppose RH fails and let

$$\beta^* = \sup{\Re \rho : \ \zeta(\rho) = 0} > 1/2.$$

Then for any σ with $1 - \sigma < \beta^* < \sigma$,

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = T^{\beta^* - \frac{1}{2}} F_{\Lambda,U}(y) + o(T^{\beta^* - \frac{1}{2}}) \quad (T \to \infty),$$

uniformly for y in compact sets, where

$$F_{\Lambda,U}(y) := \sum_{\substack{\rho: \Re \rho = \beta^* \\ |\Im \rho| \le U}} m(\rho) W_{\Lambda,y}(\rho) = e^{y(\beta^* - \frac{1}{2})} \sum_{\substack{\rho: \Re \rho = \beta^* \\ |\Im \rho| \le U}} m(\rho) \exp\left(\frac{\left(\rho - \frac{1}{2}\right)^2}{\Lambda^2}\right) e^{iy \Im \rho}$$

is a nontrivial exponential polynomial in y (after fixing U).

Proof sketch. From the phaseful global mirror expansion

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = \sum_{\rho} m(\rho) \Big(T^{\rho - \frac{1}{2}} W_{\Lambda,y}(\rho) - T^{\frac{1}{2} - \rho} W_{\Lambda,-y}(\rho) \Big),$$

the terms with $\Re \rho = \beta^*$ dominate, contributing $T^{\beta^* - \frac{1}{2}}$ up to phases $e^{\pm i(\Im \rho) \log T}$. Truncating $|\Im \rho| \leq U$ produces $F_{\Lambda,U}(y)$; the tail is o(1) by the Gaussian vertical decay and standard zero counting. Nontriviality holds because $W_{\Lambda,\cdot}$ is entire, nonvanishing and the residue of ξ'/ξ at ρ is 1.

Lemma 5.2 (Exponential polynomial in y). For fixed $U \ge 1$, the function $F_{\Lambda,U}(y)$ in Theorem 5.1 is a finite sum $\sum_{j=1}^{J} c_j e^{i\gamma_j y}$ with distinct real γ_j and nonzero coefficients c_j depending on $W_{\Lambda,\cdot}(\rho_j)$.

Remark 5.3 (Multiplicity and coincident ordinates). If several zeros share the same ordinate γ , their coefficients aggregate in the corresponding exponential term. All arguments below apply to the grouped coefficient; in particular, the nondegeneracy of the exponential polynomial on any open y-interval does not require a simplicity assumption on zeros.

Assume RH fails; let

$$\beta := \sup \{ \Re \rho \colon \zeta(\rho) = 0 \} > \frac{1}{2}.$$

Let $\mathcal{Z}_U^{:=\{\rho:\Re\rho=\beta,|\Im\rho|\leq U\}}$ (finite for each U). From the global mirror expansion (3), when $\beta^{>\frac{1}{2}}$, the dominant contribution comes from zeros with $\Re\rho=\beta$ in the first term (the second term with $W_{\Lambda,-y}$ contributes only $O(T^{-(\beta^{+\sigma-1})})$). Thus

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = \lim_{U \to \infty} \begin{bmatrix} \sigma^{-\frac{1}{2\sum}} & & & & & \\ \rho \in \mathcal{Z}_U^{m(\rho)} W_{\Lambda,y}(\rho) + \sum_{\beta < \beta} & m(\rho) W_{\Lambda,y}(\rho) T^{\beta - \frac{1}{2}} & - \sum_{|\gamma| \le U} m(\rho) W_{\Lambda,-y}(\rho) T^{\frac{1}{2} - \beta} \end{bmatrix} (4)$$

the last sum contributes $o(T^{\beta^{-\frac{1}{2}}})$ since $\frac{1}{2} - \beta^{<0}$. Likewise the middle sum is $o(T^{\beta^{-\frac{1}{2}}})$ because $\beta < \beta$. For each U, define the height-truncated leading coefficient

$$F_{\Lambda,U}(y) := \sum_{\substack{y(\beta^{-\frac{1}{2})} \sum \\ \rho \in \mathcal{Z}_U m(\rho) \text{ } W_{\Lambda,y}(\rho) = e}} \sum_{\substack{\rho \in \mathcal{Z}_U m(\rho) \text{ } \exp\left(\frac{(\rho - \frac{1}{2})^2}{\Lambda^2}\right) e^{iy\gamma}} (5)$$

Then for each fixed U,

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = T^{\beta^{-\frac{1}{2}} F_{\Lambda,U}(y) + o\left(T^{\beta^{-\frac{1}{2}}}\right) + O_U(1)}, \qquad (T \to \infty). \tag{6}$$

uniformly for y in any compact subinterval of a bounded interval.

Lemma 5.4 (Exponential-sum nondegeneracy). If $F_{\Lambda,U}(y) = 0$ for all y in a nonempty open interval $I \subset \mathbb{R}$ and all U > 0, then $\mathcal{Z}^{=\emptyset}$.

Proof. For each fixed U, write $a_{\rho} := m(\rho) \exp(((\rho - \frac{1}{2})^2)/\Lambda^2)$ and $\rho = \beta^{+i\gamma}$. Then

$$F_{\Lambda,U}(y) = e^{y(\beta^{-\frac{1}{2})} \sum_{\rho \in \mathcal{Z}_U a_\rho} e^{iy\gamma}}.$$

The prefactor never vanishes. An exponential polynomial $\sum a_{\rho}e^{iy\gamma}$ that vanishes on an interval must be identically zero; thus each coefficient $a_{\rho} = 0$ for all $\rho \in \mathcal{Z}_U$. Since this holds for all U and $m(\rho) \geq 1$, we have $\mathcal{Z}^{=\emptyset}$.

Converse direction of Theorem 1.1. Suppose $\mathcal{E}_{\sigma,\Lambda,y}(T) = o(T^{\frac{1}{2}-\sigma})$ for all $y \in I$. If $\beta^{>1/2}$, then for each fixed U, dividing (6) by $T^{\beta^{-\frac{1}{2}}}$ gives

$$\frac{\mathcal{E}_{\sigma,\Lambda,y}(T)}{T^{\beta^{-\frac{1}{2}}} = F_{\Lambda,U}(y) + o(1) + O_U(T^{-(\beta^{-\frac{1}{2}})}).}$$

Since $\beta^{-\frac{1}{2} > \frac{1}{2} - \sigma}$ (equivalently $1 - \sigma - \beta^{<0}$), the assumed bound forces $F_{\Lambda,U}(y) \equiv 0$ on I for each U. By Lemma 5.4, $\mathcal{Z}^{=\emptyset}$, contradicting $\beta^{>1/2}$. Hence $\beta^{=\frac{1}{2}}$ and RH holds.

Corollary 5.5 (Open-interval echo-silence forces RH). Assume that for every $\sigma \in (1/2, 1)$ there exists a nonempty open interval $I_{\sigma} \subset \mathbb{R}$ such that

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = o(T^{\frac{1}{2}-\sigma})$$
 uniformly for $y \in I_{\sigma}$.

Then RH holds.

Proof. If $\beta^* > 1/2$, choose σ with $1 - \sigma < \beta^* < \sigma$. By Theorem 5.1, $\mathcal{E}_{\sigma,\Lambda,y}(T) = T^{\beta^* - \frac{1}{2}} F_{\Lambda,U}(y) + o(T^{\beta^* - \frac{1}{2}})$ with a nontrivial exponential polynomial $F_{\Lambda,U}$, contradicting $o(T^{\frac{1}{2} - \sigma})$ on any open I_{σ} (since $\beta^* - \frac{1}{2} > 0$ while $\frac{1}{2} - \sigma < 0$). Hence $\beta^* = 1/2$.

6 Equivalent formulations and robustness

Corollary 6.1 (Uniform echo-silence). RH holds iff for some (equivalently, every) $\sigma \in (\frac{1}{2}, 1)$ and $\Lambda > 0$ there is a nonempty open interval I with

$$\sup_{y \in I} \ \limsup_{T \to \infty} T^{-(\frac{1}{2} - \sigma)} \left| \mathcal{E}_{\sigma, \Lambda, y}(T) \right| = 0.$$

Remark 6.2 (Choice of weight). Any entire, nonvanishing, even-in- $s-\frac{1}{2}$ factor with superpolynomial vertical decay may replace the Gaussian; the tilt $e^{y(s-1/2)}$ can be replaced by any nondegenerate one-parameter entire family $E_y(s)$ with $E_y(1-s)=E_{-y}(s)$ and $E_y(\rho)$ nontrivial in y. The proofs are unchanged.

7 Unconditional inputs and routes to vanishing

This paper isolates RH into the uniform vanishing of $\mathcal{E}_{\sigma,\Lambda,y}(T)$. Any unconditional method proving

$$\mathcal{E}_{\sigma,\Lambda,y}(T) = o(T^{\frac{1}{2}-\sigma})$$
 as $T \to \infty$,

for y in some interval yields RH by the converse direction of Theorem 1.1. Candidate routes (all independent of the specific choice of $W_{\Lambda,y}$):

- Mean-value bounds for ξ'/ξ with Gaussian weight (vertical large-sieve style).
- Dispersion/energy inequalities for coprime-filtered moments, converting off-diagonal control into echo-silence.
- Positivity methods: represent \mathcal{E} as $\int |G_{\sigma}(s)|^2 d\mu_T$ with a positive measure $d\mu_T$ and show $o(T^{\frac{1}{2}-\sigma})$.

8 Final assembly

Unconditional results.

- The mirror functional $\mathcal{E}_{\sigma,\Lambda,y}(T)$ admits an absolutely convergent residue expansion (Theorem 1.1, Lemma 2.3)
- The expansion isolates the asymmetry from off-line zeros via the factor $(T^{\beta-\frac{1}{2}}-T^{\frac{1}{2}-\beta})$
- Exponential-sum nondegeneracy prevents accidental cancellation (Lemma 5.4)

Conditional results (assuming RH).

- If RH holds, then $\mathcal{E}_{\sigma,\Lambda,y}(T) \equiv 0$ for all $T \geq 2$ (Proposition 4.1)
- The converse requires only vanishing on an open interval in y (converse direction of Theorem 1.1)
- \bullet Thus RH \Leftrightarrow uniform echo-silence across mirrors

Barriers and limits. This equivalence does not constitute a proof of RH. The required vanishing bound $\mathcal{E}_{\sigma,\Lambda,y}(T) = o(T^{1/2-\sigma})$ must be established by independent methods. The companion paper achieves this through coprime-diagonal analysis with Type I/II decomposition. Alternative routes include mean-value bounds, dispersion inequalities, or positivity methods (Section 7).

Appendix (optional): Critical line as channel

After unfolding to unit mean spacing, the pair-correlation kernel suggests the sine/sinc kernel

$$K(x,y) = \frac{\sin \pi(x-y)}{\pi(x-y)}.$$

Interpreting ordinates γ_k as samples and defining the field $\Phi(t) = \sum_k K(t, \gamma_k) e^{i\theta_k}$ gives a bandlimited reconstruction picture; the log-derivative ζ'/ζ spikes near zeros correspond to Fisher-information peaks. This heuristic plays no role in Sections 3–7.

References

- [1] E. C. Titchmarsh (revised by D. R. Heath-Brown), *The Theory of the Riemann Zeta-Function*, 2nd ed., OUP.
- [2] H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS Colloquium Publications, Vol. 53.

Paper Summary: Echo-Silence on the Critical Horizon and the Riemann Hypothesis

This paper introduces a novel approach to the Riemann Hypothesis (RH) by defining a **mirror** functional $\mathcal{E}_{\sigma,\Lambda,y}(T)$. This functional measures a quantifiable imbalance that would exist if any non-trivial zeta zero were located off the critical line $\Re s = \frac{1}{2}$. The argument is built using classical complex analysis and relies on the functional equation of the completed zeta, $\xi(s) = \xi(1-s)$.

Summation convention: all sums \sum_{ρ} are taken as **symmetric height truncations** $|\Im \rho| \leq U$ and limits $U \to \infty$ are justified by the convergence of the defining contour integrals (Gaussian vertical decay); boundary zeros are handled by indentation.

Key Components

- Mirror Functional \mathcal{E} : Defined as a difference of two contour integrals on mirror vertical lines, $\Re s = \sigma$ and $\Re s = 1 \sigma$. By residue calculus (with symmetric truncation) this equals a sum over non-trivial zeros $\rho = \beta + i\gamma$.
- The Imbalance Term: The core factor $(T^{\beta-\sigma}-T^{1-\beta-\sigma})$ is nonzero iff $\beta\neq\frac{1}{2}$.
- Mirror Weight $W_{\Lambda,y}(s)$: A Gaussian factor ensures uniform decay on vertical lines, and a tilt $e^{y(s-1/2)}$ (with $W_{\Lambda,y}(1-s) = W_{\Lambda,-y}(s)$) prevents accidental cancellation by separating ordinates via an exponential polynomial in y.

Main Theorem and Its Implications

The central theorem proves a direct equivalence:

- 1. **RH** \Rightarrow **Echo-Silence:** If RH holds ($\beta = \frac{1}{2}$ for all zeros), each pair cancels in the truncated residue expansion, and the contour formulation yields $\mathcal{E}_{\sigma,\Lambda,y}(T) \equiv 0$ (hence also $O_{\sigma,\Lambda}(T^{-A})$ for every A > 0).
- 2. Echo-Silence \Rightarrow RH: Conversely, if $\mathcal{E}_{\sigma,\Lambda,y}(T) = o(T^{1/2-\sigma})$ for all y in some open interval, then an exponential-polynomial argument forces the leading off-line coefficient to vanish, implying all zeros lie on $\Re s = \frac{1}{2}$.

This reframes RH as the unconditional vanishing of a single, precisely defined functional. Future work can target this vanishing via mean-value bounds, dispersion/positivity methods, or related analytic machinery.

The optional appendix offers a heuristic "channel" interpretation where zeros act as sampling points for a communication field. This viewpoint is **not used** in the proofs.