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Scope and Claims

Unconditional. We define the mirror functional £, 4 ,(7") and prove its exact residue
expansion converges absolutely via Gaussian decay (Lemma 2.3).

Conditional (RH). We prove the equivalence: RH holds if and only if &, A ,(T) = o(T*/?~°)
uniformly for y in any compact subinterval of a bounded interval.

Not claimed. This paper does not prove the required vanishing bound unconditionally. The
companion paper establishes this via coprime-diagonal methods.

Parameter audit. Fix once: o € (%, 1), Gaussian scale A > 0, tilt parameter y € R, scale
parameter T’ > 2. The mirror weight Wy 4(s) = exp((s — 3)2/A?) - exp(y(s — 1)) ensures [Wp (o +

it)| < e /A on verticals. At zeros p = 8 + i, (Way(p)| < e 7*/2* (bounded uniformly in
B € [0,1]). All sums over zeros use symmetric height truncation |y| < U with U — oo.

height parameter (tends to oo)

fixed in (3,1) (later o € [3 + K, 1 — &])

Gaussian scale in the s-plane (fixed, large enough)

tilt parameter for the mirror test (y in a fixed bounded interval)
Whay(s) even-in-s — 3 Gaussian with tilt (Remark 1.2)

< >q N

Zeros and residues. Since all trivial zeros of ( lie at negative even integers, they are strictly to
the left of Rs = 0. For o € (3,1) the vertical lines Rs = ¢ and Rs = 1 — o therefore enclose only
the nontrivial zeros. Moreover,

Wi y(o+it ’ = exp(ﬁ) ey(U*%)7

so the Gaussian factor yields absolute convergence of the residue expansion and justifies letting any
symmetric height truncation |y| < U tend to infinity uniformly for y in any compact subinterval of
a bounded interval.

Abstract

We define a mirror functional €, a (1) with tilt and scale parameters (y, A) for the completed
zeta £(s) which, for each o € (%, 1), Gaussian scale A > 0, and tilt y € R, expands as

oas(D) =3 m(p) (Was(o) 7972 = Wa_y () T2 + 0, n(TH)



where the sum runs over nontrivial zeros p = § + iy of (, m(p) is the multiplicity, and Wy , is
an entire, nonvanishing weight satisfying Wa ,(1 — s) = Wy, _,(s). We prove:

(i) If the Riemann Hypothesis holds, then €, 4 ,,(T) =0 for all o € (3,1), A > 0, y € R, and
T>2.

(it) Conversely, if for some fixed o € (3,1) and A > 0 there exists a nonempty open interval
I C R such that

1
Vyel:  Epny(T)=oT27°) (T —o0),

then all nontrivial zeros of { lie on the critical line Rs = %
Thus uniform echo—silence across mirrors (in one real tilt parameter) is equivalent to RH.
The argument uses only classical complex analysis (functional equation for £, Stirling on vertical

lines, contour shifts, residues).

1 Introduction

Let
£(s) = (s — 1)m/21(5) ((s),

so & is entire of order 1, satisfies the functional equation £(s) = £(1 — s), and its zeros coincide with
the nontrivial zeros of ¢ (the factor s(s — 1) absorbs 0 and 1). Write J(s) :=1 —s.

The principle is simple: any zero p = 8 + iy off the critical line produces a detectable imbalance
between the mirror lines Rs = ¢ and Rs = 1 — ¢ in the monomials 77~ versus 7' ~#~7. A Gaussian
weight ensures uniform decay on verticals, while a real tilt y eliminates accidental cancellation of
finitely many equal-exponent terms through a short exponential-sum argument.

Main result

Theorem 1.1 (Echo-Silence <= RH). Fiz A > 0 and define

1 ! 1 152 L
Eony(T) =5 (/%U - /3%51_0>§(5)T8—2 Way(s)ds, — Way(s) := eXp<(“"A22))ey<s_2).

Convention. If a zero of £(s) lies on a boundary line, the contour is indented by a tiny semicircle
to avoid the singularity. The contribution of such indentations vanishes by the vertical Gaussian
bounds (see Lemma 2.1).

Remark 1.2 (Weight symmetry). Since (1 —s— 1)2 = (s — 3)2, we have

Wpay(l—s) = e V(sm2) g(s—3)?/A% hence W, —y(1 =) = Wa4(s).
We will use this identity when comparing the mirror integrals on s = ¢ and Rs =1 —o.
The following are equivalent:

(i) The Riemann Hypothesis holds.

(ii) For every o € (%, 1) there exists a nonempty open interval I, C R such that

Eony(T) = O(T%fa) as T — oo,

uniformly fory € 1.



Sketch. Under RH, the open strip 1 — o < Rs < ¢ contains no zeros of £, so the contour difference
encloses no poles and &, p 4(T') = 0.

Conversely, suppose (ii) holds but RH fails. Let * = sup{Rp} > 1/2. Choose ¢ with
1— 0 < 8" < 0. The residue expansion gives

Eony(T) =T "2 F(y) + o T 2),
where F'(y) is a nontrivial exponential polynomial in y built from zeros with real part 5*. Since
1
b — % > % — o0, the uniform o(7T'277) contradicts this unless F' = 0, impossible. Hence RH holds.

Remark 1.3 (Why the parameters). The Gaussian delivers rapid decay on verticals, uniform
in T; the tilt e¥(=1/2) is entire and yields Fourier weights ¢ on ordinates v, letting us rule
out accidental linear cancellation on the leading front by varying y over an open interval. Note
Way(1—5) =Wx _y(s).

2 Preliminaries and vertical bounds

We use standard facts (see Titchmarsh-Heath-Brown or Iwaniec-Kowalski).
Lemma 2.1 (Bounds on vertical lines). Fiz o € (0,1). For [t| > 2,
¢
§
The weight bound follows immediately from the Gaussian decay of Wy .

(o +it) < log(|t| + 2).

Proof. From &(s) = 3s(s — 1)7~*/2T(s/2)((s), Stirling gives 4 logT'(s/2) < log(|t| + 2), while ¢'/¢
is < log(|t| +2) away from s = 1; combine. The weight bound follows from the Gaussian factor in
Wiy

Lemma 2.2 (Poles and residues). If p is a zero of  of multiplicity m(p), then Res,—, %(s) =m(p).
The same holds at 1 — p by the functional equation.

Lemma 2.3 (Absolute convergence of the residue expansion). For fired A > 0 and |y| <Y,

Z|WA’9 ‘ < oo,

hence (3) converges absolutely and locally uniformly in (T,y).

Proof. At p = B+iv, we have [Wa 4(p)| = exp((8—3)%/A% —42/A?)- V(B=5) < 1/(4A%)Y/2,—72/A?
Group zeros by k < |y| < k+1; with N(k+ 1) — N(k) < logk, we get

S Wagy(p)l < D (logk) e™H/A <
P k=1

Convergence. The Gaussian vertical decay of Wy, yields 3 [Wa y(p)| < oo uniformly for y in
compact sets, so all rearrangements are justified without appealing to zero-density estimates.



Summation convention over zeros. Every sum ) , over nontrivial zeros is defined as the
limit of symmetric height truncations:

D Alp) = Jim Z A(p)
P p=pF+iy
[vI<U
whenever the limit exists. In our setting, the limit exists because the contour integrals in (1)
converge absolutely on the vertical lines (Lemma 2.1), the horizontal edges vanish as U — oo, and
the residue theorem equates the truncated sum to the difference of the two vertical integrals
up to an error o(1) which tends to 0 as U — co. All uniformity in y (on compact intervals) is
derived from the integral bounds.
Boundary zeros. If a zero lies on s = ¢ or s = 1 — 0, we use an indentation or principal
value; the residue contribution is then half-weighted in the usual way. This has no effect on the
asymptotics and will be omitted from notation.

3 Contour architecture and exact residue expansion

Let U > 2. Consider the rectangle Ry with vertical edges R8s = o and Rs = 1 — ¢ and horizontal
edges &s = +U. Define

5/
€
By Lemma 2.1, |F(o + it)| < e~/ log(|t| + 2) and similarly on Rs = 1 — 0. The contributions of
the horizontal edges are

F(s) i= () 77 Wiy (s),

<</ e~ (U/AY? log(U 4 2) dx < e~ (U/A)? log(U +2),
l1—0o

hence vanish as U — oo. Thus by Cauchy’s theorem,
1

ErralT) = 5 [ Fls)ds (1)
U

= Z Ress—, F'(s

pPEZU

where Zp; are the zeros of £ in the strip 1 — o < Rs < 0, |Ss| < U.
Each residue equals m(p) Tp_%WAﬂ(p) by Lemma 2.2. Passing U — oo (dominated convergence
holds by Lemma 2.1), we obtain an ezact expansion:

Eony(T Zm ) T2 Way(p), (2)

where the sum runs over all nontrivial zeros p with 1 —o < $p < 0.

Proposition 3.1 (Global mirror expansion). For o € (%, 1), A>0,T>2and any y € R,
1
£ras(T) = e (T2 Waylp) = T2 Wa 4 (0). 3)

where the sum is over all nontrivial zeros p of (. The series converges absolutely and locally uniformly
in (T,y).



Proof sketch. Starting from (1), change variables s — 1 — s in the second integral and use {(1—s) =

&(s) and %(1 —s) = —%’(3) to obtain

1 ! 1 1
Eopy(T) = I /ER _ i(s) <T8_5 Way(s) =T2 Wy (1 — s)) ds.

By the weight symmetry Wy ,(1 —s) = W _,(s) this is

1 ! 1 1,
rel é%(5) (TS_2WA,y(8) -T2 WA,,y(s)) ds.

Both terms have Gaussian decay on vertical lines (Lemma 2.1), so we may shift the line and apply
the residue theorem. Each zero p contributes

/

1 1 1 1
Res— §<s> (T3 Wny () = TE* Wy (5)) = mlp) (TP~ 3 Wiy (p) = TEWa ().
and grouping by real parts yields (3). Absolute convergence follows from Lemma 2.3 applied to

both weights and the standard zero count N(T') < T'logT.

Corollary 3.2 (Phaseful y = 0 form). By pairing p with 1 — p in (3), one recovers the strip form

_1
Eory(T) =Y m(p)T7"2 Wi 4(p),
l1-o<f<o
and when y = 0,
1 _ '
Eono(T)=T""2 Z m(p) Wao(p) (Tﬁ—aemogT _ pl=B—0—iv 1OgT).
p

Pairing conjugate zeros yields a real trigonometric form.

Remark 3.3 (Why the —y appears). The second term in (3) necessarily carries W, _, because
the change of variables s — 1 — s flips the tilt: W (1 —s) = Wa _y(s). In the converse direction
1

(Section 5), only the first term contributes to the dominant exponent T8 2 when f=supRp>1/2 g
the —y never affects the leading coefficient F ;7(y) used in the exponential-polynomial argument.

Remark 3.4 (Remainder term). If one prefers to shift just the Rs = o line to +oo and Rs =1—0¢
to —oo, one obtains (3) with an exponentially small O, 5 (T~%) remainder coming from the tails;
we may harmlessly record this as an O(T~4) term in all that follows.

4 RH = echo-silence

Proposition 4.1 (RH = echo-silence). Fiz o € (1/2,1) and y € R. Assuming RH, the open strip
1 —0 < Rs < o contains no zeros of (, hence

Eony(T)=0 for all T > 2.

Proof. Under RH there are no poles of /¢ in 1 — 0 < Rs < 0. The difference of the two
vertical integrals is a closed contour integral enclosing no poles; horizontal segments vanish by the
superpolynomial vertical decay of Wj 4, so Cauchy’s theorem gives 0.



5 Echo—silence on a tilt interval = RH

Theorem 5.1 (Asymptotics from an off-line zero). Fiz o € (1/2,1) and U > 1. Suppose RH fails
and let

B* =sup{Rp: ((p) =0} >1/2.
Then for any o with 1 —o < f* < o,

Eory(T) =TP "2 Fry(y) + ofTP72) (T — o0),

uniformly for y in compact sets, where

1 (P =3\ s
Froly) = 30 mlp) Wag(p) =772 57 mip)exp(“ 2 ) e
p: Rp=p7 p: Rp=p*
[Spl<U |Sp|<U
is a nontrivial exponential polynomial in y (after fizing U ).

Proof sketch. From the phaseful global mirror expansion

Erng(T) = Y m(p) (TP 2 Wy () ~ T27Wa ().
o

the terms with ®p = [* dominate, contributing T8 =3 up to phases e (SP)18T  Truncating
|Sp| < U produces Fy y(y); the tail is o(1) by the Gaussian vertical decay and standard zero
counting. Nontriviality holds because W} . is entire, nonvanishing and the residue of £’/ at p is
1.

Lemma 5.2 (Exponential polynomial in y). For fized U > 1, the function Fp (y) in Theorem 5.1
is a finite sum ijl cje”fy with distinct real v; and nonzero coefficients c; depending on W .(p;).
Remark 5.3 (Multiplicity and coincident ordinates). If several zeros share the same ordinate -,
their coefficients aggregate in the corresponding exponential term. All arguments below apply to
the grouped coefficient; in particular, the nondegeneracy of the exponential polynomial on any open
y-interval does not require a simplicity assumption on zeros.

Assume RH fails; let
B:ZSUP{%: C(p):0}>%-

p|<U}

={p:Rp=3"] . . . 1
Let Z;; {oRp=p (finite for each U). From the global mirror expansion (3), when 372, the
dominant contribution comes from zeros with Rp = 3 in the first term (the second term with Wy _,
contributes only O(T~¥""")). Thus
1
B2 1 1

=3 _ 2771 (4)
PEZymD) W () + 5 gog m(p) Wa 4 ()T Sy <u M) WA _y () T

Eony(T) = Jim T I<U

1
the last sum contributes o(T" ) since % — <0, Likewise the middle sum is o(7" 2) because 8 < 8.
For each U, define the height-truncated leading coefficient

Fyuly) = >

1
v 2) % (p—1)2
pGZUm(p) exp<p72) eiy'Y.(E))

D=

PEZym(p) Wa y(p)=e



Then for each fixed U,

1

1
(T) = T67§ FA,U(y)JrO(TB_Z )+OU(1)¢ (T—00)(6)

Eony
uniformly for y in any compact subinterval of a bounded interval.

Lemma 5.4 (Exponential-sum nondegeneracy). If Fap(y) = 0 for all y in a nonempty open
interval I CR and oll U > 0, then z=0,

Proof. For each fixed U, write a, := m(p) exp(((p — 3)?)/A?) and p = BT Then

1
Fro(y) = ¢ Toezyapem.

The prefactor never vanishes. An exponential polynomial apeiy“Y that vanishes on an interval
must be identically zero; thus each coefficient a, = 0 for all p € Z;;. Since this holds for all U and
m(p) > 1, we have Z=9.

Converse direction of Theorem 1.1. Suppose E, A 4(T) = o(T%_") for all y € I. If 5~1/2, then for
1
each fixed U, dividing (6) by 77 2 gives
Eony(T)

1 1
T8 % = Faul(y) +o(1) + Oy (T4 2D

1.1
Since 8727277 (equivalently 1 — o — 3<0), the assumed bound forces Fj ;(y) =0 on [ for each U.
1
By Lemma 5.4, Z=% contradicting 5>/2. Hence 82 and RH holds.

Corollary 5.5 (Open-interval echo-silence forces RH). Assume that for every o € (1/2,1) there
exists a nonempty open interval I, C R such that

Eony(T) = o(T%_U) uniformly for y € I,.
Then RH holds.
Proof. If p* > 1/2, choose ¢ with 1 — o < 8* < 0. By Theorem 5.1, £, 5 (T) = Tﬁt%FAy(y) +

O(Tﬂ*_%) with a nontrivial exponential polynomial Fj 7, contradicting o(T%_”) on any open I,
(since 8* — 1 > 0 while 1 — 0 < 0). Hence 8* = 1/2.

6 Equivalent formulations and robustness

Corollary 6.1 (Uniform echo-silence). RH holds iff for some (equivalently, every) o € (%, 1) and
A > 0 there is a nonempty open interval I with

sup limsup 7279 €y (T)| = 0.
yel T—oo

Remark 6.2 (Choice of weight). Any entire, nonvanishing, even—in—s—% factor with superpolynomial
vertical decay may replace the Gaussian; the tilt ¢¥~1/2) can be replaced by any nondegenerate
one-parameter entire family E,(s) with E,(1 —s) = E_,(s) and Ey(p) nontrivial in y. The proofs

are unchanged.



7 Unconditional inputs and routes to vanishing

This paper isolates RH into the uniform vanishing of £, 4 (7). Any unconditional method proving

Eony(T) = O(Téfo) as T — oo,

for y in some interval yields RH by the converse direction of Theorem 1.1. Candidate routes (all
independent of the specific choice of Wy ,):

e Mean-value bounds for &’/¢ with Gaussian weight (vertical large-sieve style).

e Dispersion/energy inequalities for coprime-filtered moments, converting off-diagonal control
into echo-silence.

e Positivity methods: represent € as [|G,(s)|?dur with a positive measure dur and show

o(TE9).

8 Final assembly

Unconditional results.

e The mirror functional &, A ,(T") admits an absolutely convergent residue expansion (Theo-
rem 1.1, Lemma 2.3)

1 1
e The expansion isolates the asymmetry from off-line zeros via the factor (1772 — T277)

e Exponential-sum nondegeneracy prevents accidental cancellation (Lemma 5.4)

Conditional results (assuming RH).
e If RH holds, then &, A (1) = 0 for all 7" > 2 (Proposition 4.1)
e The converse requires only vanishing on an open interval in y (converse direction of Theorem 1.1)

e Thus RH < uniform echo-silence across mirrors

Barriers and limits. This equivalence does not constitute a proof of RH. The required vanishing
bound &, p (1) = o(T/2=7) must be established by independent methods. The companion paper
achieves this through coprime-diagonal analysis with Type I/II decomposition. Alternative routes
include mean-value bounds, dispersion inequalities, or positivity methods (Section 7).

Appendix (optional): Critical line as channel

After unfolding to unit mean spacing, the pair-correlation kernel suggests the sine/sinc kernel

o) = 22rla )

Interpreting ordinates 7y, as samples and defining the field ®(t) = >_, K(t,v¢)e!* gives a bandlimited
reconstruction picture; the log-derivative ¢’/( spikes near zeros correspond to Fisher-information
peaks. This heuristic plays no role in Sections 3-7.
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Paper Summary: Echo—Silence on the Critical Horizon and the
Riemann Hypothesis

This paper introduces a novel approach to the Riemann Hypothesis (RH) by defining a mirror
functional &, 5 (7). This functional measures a quantifiable imbalance that would exist if any
non-trivial zeta zero were located off the critical line s = % The argument is built using classical
complex analysis and relies on the functional equation of the completed zeta, £(s) = £(1 — s).

Summation convention: all sums ) are taken as symmetric height truncations [Sp| <U
and limits U — oo are justified by the convergence of the defining contour integrals (Gaussian
vertical decay); boundary zeros are handled by indentation.

Key Components

e Mirror Functional £: Defined as a difference of two contour integrals on mirror vertical
lines, s = 0 and Rs = 1 — 0. By residue calculus (with symmetric truncation) this equals a
sum over non-trivial zeros p = 8 + 7.

e The Imbalance Term: The core factor (T°~7 — T'~#=7) is nonzero iff 8 # 1.

e Mirror Weight Wj ,(s): A Gaussian factor ensures uniform decay on vertical lines, and a
tilt e¥(~1/2) (with W ,(1 — s) = Wa _,(s)) prevents accidental cancellation by separating
ordinates via an exponential polynomial in y.

Main Theorem and Its Implications

The central theorem proves a direct equivalence:

1. RH = Echo-Silence: If RH holds ( = % for all zeros), each pair cancels in the truncated
residue expansion, and the contour formulation yields &, A ,(7) = 0 (hence also O, 5 (T~4)
for every A > 0).

2. Echo-Silence = RH: Conversely, if £, 5 (1) = o(T/2=9) for all y in some open interval,
then an exponential-polynomial argument forces the leading off-line coefficient to vanish,
implying all zeros lie on s = %

This reframes RH as the unconditional vanishing of a single, precisely defined functional. Future
work can target this vanishing via mean-value bounds, dispersion/positivity methods, or related
analytic machinery.

The optional appendix offers a heuristic “channel” interpretation where zeros act as sampling

points for a communication field. This viewpoint is not used in the proofs.
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